舉報

會員
Data Science Projects with Python
DataScienceProjectswithPythonisdesignedtogiveyoupracticalguidanceonindustry-standarddataanalysisandmachinelearningtoolsinPython,withthehelpofrealisticdata.ThebookwillhelpyouunderstandhowyoucanusepandasandMatplotlibtocriticallyexamineadatasetwithsummarystatisticsandgraphs,andextracttheinsightsyouseektoderive.Youwillcontinuetobuildonyourknowledgeasyoulearnhowtopreparedataandfeedittomachinelearningalgorithms,suchasregularizedlogisticregressionandrandomforest,usingthescikit-learnpackage.You’lldiscoverhowtotunethealgorithmstoprovidethebestpredictionsonnewand,unseendata.Asyoudelveintolaterchapters,you’llbeabletounderstandtheworkingandoutputofthesealgorithmsandgaininsightintonotonlythepredictivecapabilitiesofthemodelsbutalsotheirreasonsformakingthesepredictions.Bytheendofthisbook,youwillhavetheskillsyouneedtoconfidentlyusevariousmachinelearningalgorithmstoperformdetaileddataanalysisandextractmeaningfulinsightsfromunstructureddata.
目錄(47章)
倒序
- 封面
- 版權頁
- Preface
- About
- Chapter 1: Data Exploration and Cleaning
- Introduction
- Python and the Anaconda Package Management System
- Different Types of Data Science Problems
- Loading the Case Study Data with Jupyter and pandas
- Data Quality Assurance and Exploration
- Exploring the Financial History Features in the Dataset
- Summary
- Chapter 2: Introduction to Scikit-Learn and Model Evaluation
- Introduction
- Exploring the Response Variable and Concluding the Initial Exploration
- Introduction to Scikit-Learn
- Model Performance Metrics for Binary Classification
- Summary
- Chapter 3: Details of Logistic Regression and Feature Exploration
- Introduction
- Examining the Relationships between Features and the Response
- Univariate Feature Selection: What It Does and Doesn't Do
- Summary
- Chapter 4: The Bias-Variance Trade-off
- Introduction
- Estimating the Coefficients and Intercepts of Logistic Regression
- Cross Validation: Choosing the Regularization Parameter and Other Hyperparameters
- Summary
- Chapter 5: Decision Trees and Random Forests
- Introduction
- Decision trees
- Random Forests: Ensembles of Decision Trees
- Summary
- Chapter 6: Imputation of Missing Data Financial Analysis and Delivery to Client
- Introduction
- Review of Modeling Results
- Dealing with Missing Data: Imputation Strategies
- Final Thoughts on Delivering the Predictive Model to the Client
- Summary
- Appendix
- About
- Chapter 1: Data Exploration and Cleaning
- Chapter 2: Introduction to Scikit-Learn and Model Evaluation
- Chapter 3: Details of Logistic Regression and Feature Exploration
- Chapter 4: The Bias-Variance Trade-off
- Chapter 5: Decision Trees and Random Forests
- Chapter 6: Imputation of Missing Data Financial Analysis and Delivery to Client 更新時間:2021-06-11 13:29:22
推薦閱讀
- 大數據技術基礎
- ETL數據整合與處理(Kettle)
- Voice Application Development for Android
- 使用GitOps實現Kubernetes的持續部署:模式、流程及工具
- 云計算服務保障體系
- 達夢數據庫性能優化
- OracleDBA實戰攻略:運維管理、診斷優化、高可用與最佳實踐
- Power BI商業數據分析完全自學教程
- Python數據分析與挖掘實戰(第3版)
- 一本書講透Elasticsearch:原理、進階與工程實踐
- 云計算寶典:技術與實踐
- 數據挖掘競賽實戰:方法與案例
- 數據庫查詢優化器的藝術:原理解析與SQL性能優化
- 利用Python進行數據分析(原書第2版)
- 數據中心UPS系統運維
- Trino權威指南(原書第2版)
- Tableau商業分析從新手到高手(視頻版)
- R數據挖掘實戰
- Discovering Business Intelligence Using MicroStrategy 9
- 大數據處理之道
- UnrealScript Game Programming Cookbook
- 學習型智能優化算法及其應用
- 騰訊大數據構建之道
- Swift:Developing iOS Applications
- 零距離接觸云計算
- Microsoft Power BI 智能大數據分析
- SQL Server 2012實用教程
- DB2數據庫管理最佳實踐
- 深度學習實踐:計算機視覺
- Oracle RAC核心技術詳解