- Data Science Projects with Python
- Stephen Klosterman
- 76字
- 2021-06-11 13:29:11
Chapter 2:
Introduction to Scikit-Learn and Model Evaluation
Learning Objectives
By the end of this chapter, you will be able to:
- Explain the response variable
- Describe the implications of imbalanced data in binary classification
- Split data into training and testing sets
- Describe model fitting in scikit-learn
- Derive several metrics for binary classification
- Create an ROC curve and a precision-recall curve
This chapter will conclude the initial exploratory analysis and present new tools to perform model evaluation.
推薦閱讀
- 云數據中心基礎
- Voice Application Development for Android
- MongoDB管理與開發精要
- 新型數據庫系統:原理、架構與實踐
- 工業大數據分析算法實戰
- Microsoft Power BI數據可視化與數據分析
- OracleDBA實戰攻略:運維管理、診斷優化、高可用與最佳實踐
- Python金融數據分析(原書第2版)
- IPython Interactive Computing and Visualization Cookbook(Second Edition)
- 聯動Oracle:設計思想、架構實現與AWR報告
- 企業主數據管理實務
- Web Services Testing with soapUI
- 機器學習:實用案例解析
- 數據中心經營之道
- 大數據隱私保護技術與治理機制研究