- Data Science Projects with Python
- Stephen Klosterman
- 76字
- 2021-06-11 13:29:11
Chapter 2:
Introduction to Scikit-Learn and Model Evaluation
Learning Objectives
By the end of this chapter, you will be able to:
- Explain the response variable
- Describe the implications of imbalanced data in binary classification
- Split data into training and testing sets
- Describe model fitting in scikit-learn
- Derive several metrics for binary classification
- Create an ROC curve and a precision-recall curve
This chapter will conclude the initial exploratory analysis and present new tools to perform model evaluation.
推薦閱讀
- 云數(shù)據(jù)中心基礎(chǔ)
- Developing Mobile Games with Moai SDK
- Learning Spring Boot
- R數(shù)據(jù)科學(xué)實戰(zhàn):工具詳解與案例分析(鮮讀版)
- OracleDBA實戰(zhàn)攻略:運維管理、診斷優(yōu)化、高可用與最佳實踐
- R語言數(shù)據(jù)挖掘
- Python數(shù)據(jù)分析與數(shù)據(jù)化運營
- 探索新型智庫發(fā)展之路:藍迪國際智庫報告·2015(上冊)
- 視覺大數(shù)據(jù)智能分析算法實戰(zhàn)
- 新手學(xué)會計(2013-2014實戰(zhàn)升級版)
- Expert Python Programming(Third Edition)
- 信息融合中估計算法的性能評估
- Deep Learning with R for Beginners
- 離線和實時大數(shù)據(jù)開發(fā)實戰(zhàn)
- 大數(shù)據(jù)技術(shù)體系詳解:原理、架構(gòu)與實踐