官术网_书友最值得收藏!

Introduction

Most businesses possess a wealth of data on their operations and customers. Reporting on these data in the form of descriptive charts, graphs, and tables is a good way to understand the current state of the business. However, in order to provide quantitative guidance on future business strategies and operations, it is necessary to go a step further. This is where the practices of machine learning and predictive modeling become involved. In this book, we will show how to go from descriptive analyses to concrete guidance for future operations using predictive models.

To accomplish this goal, we'll introduce some of the most widely-used machine learning tools via Python and many of its packages. You will also get a sense of the practical skills necessary to execute successful projects: inquisitiveness when examining data and communication with the client. Time spent looking in detail at a dataset and critically examining whether it accurately meets its intended purpose is time well spent. You will learn several techniques for assessing data quality here.

In this chapter, after getting familiar with the basic tools for data exploration, we will discuss a few typical working scenarios for how you may receive data. Then, we will begin a thorough exploration of the case study dataset and help you learn how you can uncover possible issues, so that when you are ready for modeling, you may proceed with confidence.

主站蜘蛛池模板: 城步| 九龙县| 霍州市| 汕尾市| 资兴市| 庆元县| 延安市| 乌鲁木齐市| 奎屯市| 台东市| 砚山县| 高唐县| 乌审旗| 石屏县| 乾安县| 鹤庆县| 定远县| 西充县| 徐州市| 新邵县| 平凉市| 土默特右旗| 民丰县| 冀州市| 洛川县| 嘉定区| 达日县| 秦皇岛市| 余庆县| 兰西县| 富阳市| 宜春市| 延边| 新邵县| 辽阳市| 安龙县| 三河市| 张掖市| 揭西县| 涟源市| 潞西市|