舉報

會員
The Machine Learning Workshop
Machinelearningalgorithmsareanintegralpartofalmostallmodernapplications.Tomakethelearningprocessfasterandmoreaccurate,youneedatoolflexibleandpowerfulenoughtohelpyoubuildmachinelearningalgorithmsquicklyandeasily.WithTheMachineLearningWorkshop,you'llmasterthescikit-learnlibraryandbecomeproficientindevelopingclevermachinelearningalgorithms.TheMachineLearningWorkshopbeginsbydemonstratinghowunsupervisedandsupervisedlearningalgorithmsworkbyanalyzingareal-worlddatasetofwholesalecustomers.Onceyou'vegottogripswiththebasics,you’lldevelopanartificialneuralnetworkusingscikit-learnandthenimproveitsperformancebyfine-tuninghyperparameters.Towardstheendoftheworkshop,you'llstudythedatasetofabank'smarketingactivitiesandbuildmachinelearningmodelsthatcanlistclientswhoarelikelytosubscribetoatermdeposit.You'llalsolearnhowtocomparethesemodelsandselecttheoptimalone.BytheendofTheMachineLearningWorkshop,you'llnotonlyhavelearnedthedifferencebetweensupervisedandunsupervisedmodelsandtheirapplicationsintherealworld,butyou'llalsohavedevelopedtheskillsrequiredtogetstartedwithprogrammingyourveryownmachinelearningalgorithms.
目錄(55章)
倒序
- 封面
- 版權信息
- Preface
- 1. Introduction to Scikit-Learn
- Introduction
- Introduction to Machine Learning
- Scikit-Learn
- Data Representation
- Data Preprocessing
- Scikit-Learn API
- Supervised and Unsupervised Learning
- Summary
- 2. Unsupervised Learning – Real-Life Applications
- Introduction
- Clustering
- Exploring a Dataset – Wholesale Customers Dataset
- Data Visualization
- Mean-Shift Algorithm
- DBSCAN Algorithm
- Evaluating the Performance of Clusters
- Summary
- 3. Supervised Learning – Key Steps
- Introduction
- Supervised Learning Tasks
- Model Validation and Testing
- Evaluation Metrics
- Error Analysis
- Summary
- 4. Supervised Learning Algorithms: Predicting Annual Income
- Introduction
- Exploring the Dataset
- The Na?ve Bayes Algorithm
- The Decision Tree Algorithm
- The Support Vector Machine Algorithm
- Error Analysis
- Summary
- 5. Supervised Learning – Key Steps
- Introduction
- Artificial Neural Networks
- Applying an Artificial Neural Network
- Performance Analysis
- Summary
- 6. Building Your Own Program
- Introduction
- Program Definition
- Saving and Loading a Trained Model
- Interacting with a Trained Model
- Summary
- Appendix
- 1. Introduction to Scikit-Learn
- 2. Unsupervised Learning – Real-Life Applications
- 3. Supervised Learning – Key Steps
- 4. Supervised Learning Algorithms: Predicting Annual Income
- 5. Artificial Neural Networks: Predicting Annual Income
- 6. Building Your Own Program 更新時間:2021-06-18 18:24:05
推薦閱讀
- 網絡服務器配置與管理(第3版)
- Creating Dynamic UI with Android Fragments
- Linux運維之道(第2版)
- Deep Learning with PyTorch
- 計算機維修與維護技術速成
- Learning Game Physics with Bullet Physics and OpenGL
- R Deep Learning Essentials
- Blender Quick Start Guide
- Hands-On Motion Graphics with Adobe After Effects CC
- Intel FPGA權威設計指南:基于Quartus Prime Pro 19集成開發環境
- 基于網絡化教學的項目化單片機應用技術
- FPGA實驗實訓教程
- USB應用分析精粹:從設備硬件、固件到主機端程序設計
- 微服務實戰
- 筆記本電腦維修技能實訓
- 微服務架構基礎(Spring Boot+Spring Cloud+Docker)
- 計算機組裝、維護與維修項目教程
- 筆記本電腦現場維修實錄
- 多媒體應用技術(第2版)
- Hands-On Explainable AI(XAI) with Python
- 精選單片機設計與制作30例
- CPU自制入門
- 單片機原理及應用(第2版)
- Photographic Rendering with VRay for SketchUp
- 可編程序控制器應用技術(第3版)
- IntelliJ IDEA Essentials
- 計算機主板維修不是事兒(第2版)
- FPGA軟件測試與評價技術
- Creo 機械設計實例教程(6.0版)
- Learning PowerCLI