- The Machine Learning Workshop
- Hyatt Saleh
- 76字
- 2021-06-18 18:23:56
2. Unsupervised Learning – Real-Life Applications
Overview
This chapter explains the concept of clustering in machine learning. It explains three of the most common clustering algorithms, with a hands-on approximation to solve a real-life data problem. By the end of this chapter, you should have a firm understanding of how to create clusters out of a dataset using the k-means, mean-shift, and DBSCAN algorithms, as well as the ability to measure the accuracy of those clusters.
推薦閱讀
- Linux KVM虛擬化架構(gòu)實(shí)戰(zhàn)指南
- 極簡Spring Cloud實(shí)戰(zhàn)
- 平衡掌控者:游戲數(shù)值經(jīng)濟(jì)設(shè)計(jì)
- 筆記本電腦維修不是事兒(第2版)
- 嵌入式系統(tǒng)中的模擬電路設(shè)計(jì)
- Rapid BeagleBoard Prototyping with MATLAB and Simulink
- OpenGL Game Development By Example
- Python Machine Learning Blueprints
- FPGA實(shí)戰(zhàn)訓(xùn)練精粹
- 微服務(wù)架構(gòu)基礎(chǔ)(Spring Boot+Spring Cloud+Docker)
- 電腦主板維修技術(shù)
- Service Mesh微服務(wù)架構(gòu)設(shè)計(jì)
- 多媒體應(yīng)用技術(shù)(第2版)
- 微服務(wù)架構(gòu)實(shí)戰(zhàn):基于Spring Boot、Spring Cloud、Docker
- 計(jì)算機(jī)組裝與維護(hù)