舉報

會員
The Deep Learning with Keras Workshop
Newexperiencescanbeintimidating,butnotthisone!Thisbeginner’sguidetodeeplearningisheretohelpyouexploredeeplearningfromscratchwithKeras,andbeonyourwaytotrainingyourfirsteverneuralnetworks.WhatsetsKerasapartfromotherdeeplearningframeworksisitssimplicity.Withovertwohundredthousandusers,Kerashasastrongeradoptioninindustryandtheresearchcommunitythananyotherdeeplearningframework.TheDeepLearningwithKerasWorkshopstartsbyintroducingyoutothefundamentalconceptsofmachinelearningusingthescikit-learnpackage.Afterlearninghowtoperformthelineartransformationsthatarenecessaryforbuildingneuralnetworks,you'llbuildyourfirstneuralnetworkwiththeKeraslibrary.Asyouadvance,you'lllearnhowtobuildmulti-layerneuralnetworksandrecognizewhenyourmodelisunderfittingoroverfittingtothetrainingdata.Withthehelpofpracticalexercises,you’lllearntousecross-validationtechniquestoevaluateyourmodelsandthenchoosetheoptimalhyperparameterstofine-tunetheirperformance.Finally,you’llexplorerecurrentneuralnetworksandlearnhowtotrainthemtopredictvaluesinsequentialdata.Bytheendofthisbook,you'llhavedevelopedtheskillsyouneedtoconfidentlytrainyourownneuralnetworkmodels.
目錄(71章)
倒序
- 封面
- 版權信息
- Preface
- 1. Introduction to Machine Learning with Keras
- Introduction
- Data Representation
- Data Preprocessing
- Life Cycle of Model Creation
- scikit-learn
- Keras
- Model Training
- Model Tuning
- Summary
- 2. Machine Learning versus Deep Learning
- Introduction
- Linear Transformations
- Introduction to Keras
- Summary
- 3. Deep Learning with Keras
- Introduction
- Building Your First Neural Network
- Model Evaluation
- Summary
- 4. Evaluating Your Model with Cross-Validation Using Keras Wrappers
- Introduction
- Cross-Validation
- Cross-Validation for Deep Learning Models
- Model Selection with Cross-Validation
- Summary
- 5. Improving Model Accuracy
- Introduction
- Regularization
- L1 and L2 Regularization
- Dropout Regularization
- Other Regularization Methods
- Hyperparameter Tuning with scikit-learn
- Summary
- 6. Model Evaluation
- Introduction
- Accuracy
- Imbalanced Datasets
- Confusion Matrix
- Summary
- 7. Computer Vision with Convolutional Neural Networks
- Introduction
- Computer Vision
- Convolutional Neural Networks
- The Architecture of a CNN
- Image Augmentation
- Summary
- 8. Transfer Learning and Pre-Trained Models
- Introduction
- Pre-Trained Sets and Transfer Learning
- Fine-Tuning a Pre-Trained Network
- Summary
- 9. Sequential Modeling with Recurrent Neural Networks
- Introduction
- Sequential Memory and Sequential Modeling
- Recurrent Neural Networks (RNNs)
- Long Short-Term Memory (LSTM)
- Summary
- Appendix
- 1. Introduction to Machine Learning with Keras
- 2. Machine Learning versus Deep Learning
- 3. Deep Learning with Keras
- 4. Evaluating Your Model with Cross-Validation Using Keras Wrappers
- 5. Improving Model Accuracy
- 6. Model Evaluation
- 7. Computer Vision with Convolutional Neural Networks
- 8. Transfer Learning and Pre-Trained Models
- 9. Sequential Modeling with Recurrent Neural Networks 更新時間:2021-06-18 18:13:53
推薦閱讀
- 零點起飛學Xilinx FPG
- Effective STL中文版:50條有效使用STL的經驗(雙色)
- Deep Learning with PyTorch
- Intel FPGA/CPLD設計(高級篇)
- Manage Partitions with GParted How-to
- 從零開始學51單片機C語言
- 計算機維修與維護技術速成
- 計算機組裝與維修技術
- Spring Cloud微服務架構實戰
- 龍芯自主可信計算及應用
- Source SDK Game Development Essentials
- Spring Cloud實戰
- 3D Printing Blueprints
- 單片機原理與技能訓練
- Building Machine Learning Systems with Python
- 詳解FPGA:人工智能時代的驅動引擎
- 新編計算機組裝與維護
- 新型復印機·傳真機維修數據速查寶典
- 三菱FX2N系列PLC入門與應用實例
- Deep Learning for Beginners
- Fixing Bad UX Designs
- Avid Media Composer 6.x Cookbook
- 計算機技能大賽指導:調試維修
- PlayStation?Mobile Development Cookbook
- Getting started with IntelliJ IDEA
- CPU自制入門
- 單片機原理及應用(第2版)
- 主板維修從入門到精通
- Arduino圖形化編程進階實戰
- 電腦組裝與維修從入門到精通