用Python實(shí)現(xiàn)深度學(xué)習(xí)框架
本書帶領(lǐng)讀者用原生Python語(yǔ)言和Numpy線性代數(shù)庫(kù)實(shí)現(xiàn)一個(gè)基于計(jì)算圖的深度學(xué)習(xí)框架MatrixSlow(類似簡(jiǎn)易版的PyTorch、TensorFlow或Caffe)。全書分為三個(gè)部分。第一部分是原理篇,實(shí)現(xiàn)了MatrixSlow框架的核心基礎(chǔ)設(shè)施,并基于此講解了機(jī)器學(xué)習(xí)與深度學(xué)習(xí)的概念和原理,比如模型、計(jì)算圖、訓(xùn)練、梯度下降法及其各種變體。第二部分是模型篇,介紹了多種具有代表性的模型,包括邏輯回歸、多層全連接神經(jīng)網(wǎng)絡(luò)、因子分解機(jī)、Wide&Deep、DeepFM、循環(huán)神經(jīng)網(wǎng)絡(luò)以及卷積神經(jīng)網(wǎng)絡(luò),這部分除了著重介紹這些模型的原理、結(jié)構(gòu)以及它們之間的聯(lián)系外,還用MatrixSlow框架搭建并訓(xùn)練它們以解決實(shí)際問(wèn)題。第三部分是工程篇,討論了一些與深度學(xué)習(xí)框架相關(guān)的工程問(wèn)題,內(nèi)容涉及訓(xùn)練與評(píng)估,模型的保存、導(dǎo)入和服務(wù)部署,分布式訓(xùn)練,等等。
·13.6萬(wàn)字