1.1.1 質點的產生和消失
為了說明氣體放電過程,首先必須了解氣體中帶電粒子產生、運動、消失的過程和條件。
1.氣體中的運動
(1)自由行程長度
當氣體中存在電場時,其中的帶電粒子將具有復雜的運動軌跡,它們一方面與中性的氣體粒子(原子或分子)一樣,進行著混亂熱運動,另一方面又將沿著電場作定向漂移(見圖1-1)。

圖1-1 電子在有電場的氣體中的運動軌跡
各種粒子在氣體中運動時都會不斷地互相碰撞,任一粒子在1cm的行程中所遭遇的碰撞次數與氣體分子的半徑和密度有關。單位行程中的碰撞次數Z的倒數入即為該粒子的平均自由行程長度。
實際的自由行程長度是一個隨機量,并具有很大的分散性。粒子的自由行程長度等于或大于某一距離x的概率為

可見,實際自由行程長度等于或大于平均自由行程長度的概率為36.8%。由于電子的半徑或體積要比離子或氣體分子小得多,所以電子的平均自由行程長度要比離子或氣體分子大得多。由氣體動力學可知,電子的平均自由行程長度為

式中 r——氣體分子的半徑;
N——氣體分子的密度。
由于,代入式(1-2)即得

式中 p——氣壓(Pa);
T——氣溫(K);
k——玻爾茲曼常數,k=1.38×10-23J/K。
在大氣壓和常溫下,電子在空氣中的平均自由行程長度的數量級為10-5cm。
(2)帶電粒子的遷移率
帶電粒子雖然不可避免地要與氣體分子不斷地發生碰撞,但在電場力的驅動下,仍將沿著電場方向漂移,其速度v與場強E成正比,其比例系數k=v/E稱為遷移率,它表示該帶電粒子在單位場強(1V/m)下沿電場方向的漂移速度。
由于電子的平均自由行程長度比離子大得多,而電子的質量比離子小得多,更易加速,所以電子的遷移率遠大于離子。
(3)擴散
氣體中帶電粒子和中性粒子的運動還與粒子的濃度有關。在熱運動的過程中,粒子會從濃度較大的區域運動到濃度較小的區域,從而使每種粒子的濃度分布均勻化,這種物理過程稱為擴散。氣壓越低或溫度越高,則擴散進行得越快。電子的熱運動速度大、自由行程長度大,所以其擴散速度也要比離子快得多。
2.帶電粒子的產生
產生帶電粒子的物理過程稱為電離,它是氣體放電的首要前提。
氣體原子中的電子沿著原子核周圍的圓形或橢圓形軌道,圍繞帶正電的原子核旋轉。在常態下,電子處于離核最近的軌道上,因為這樣勢能最小。當原子獲得外加能量時,一個或若干個電子有可能轉移到離核較遠的軌道上去,這個現象稱為激勵,產生激勵所需的能量(激勵能)等于該軌道和常態軌道的能級差。激勵狀態存在的時間很短(例如,10-8s),電子將自動返回常態軌道上去,這時產生激勵時所吸收的外加能量將以輻射能(光子)的形式放出。如果原子獲得的外加能量足夠大,電子還可躍遷至離核更遠的軌道上去,甚至擺脫原子核的約束而成為自由電子,這時原來中性的原子發生了電離,分解成兩種帶電粒子——電子和正離子,使基態原子或分子中結合最松弛的那個電子電離出來所需的最小能量稱為電離能。
表1-1列出了某些常見氣體的激勵能和電離能之值,它們通常以電子伏(eV)表示。由于電子的電荷qe恒等于1.6×10-19C,所以有時也可以采用激勵電位從(V)和電離電位Ui(V)來代替激勵能和電離能,以便在計算中排除qe值。
表1-1 某些氣體的激勵能和電離能

引起電離所需的能量可通過不同的形式傳遞給氣體分子,諸如光能、熱能、機械(動)能等,對應的電離過程稱為光電離、熱電離、碰撞電離等。
(1)光電離
頻率為ν的光子能量為

式中 h——普朗克常數,h=6.63×10-34J·s=4.13×10-15eV·s。
發生空間光電離的條件應為

或者

式中 λ——光的波長(m);
c——光速,c=3×108m/s;
Wi——氣體的電離能(eV)。
通過式(1-5)的計算可知,各種可見光都不能使氣體直接發生光電離,紫外線也只能使少數幾種電離能特別小的金屬蒸氣發生光電離,只有那些波長更短的高能輻射線(例如,X射線、γ射線等)才能使氣體發生光電離。
應該指出:在氣體放電中,能導致氣體光電離的光源不僅有外界的高能輻射線,而且還可能是氣體放電本身,例如在后面將要介紹的帶電粒子復合的過程中,就會放出輻射能而引起新的光電離。
(2)熱電離
在常溫下,氣體分子發生熱電離的概率極小。氣體中已發生電離的分子數與總分子數的比值m稱為該氣體的電離度。圖1-2是空氣的電離度m與溫度T的關系曲線,可以看出:只有在溫度超過10000K時(例如,電弧放電的情況),才需要考慮熱電離;而在溫度達到20000K左右時,幾乎全部空氣分子都已處于熱電離狀態。

圖1-2 空氣的電離度m與溫度T的關系曲線
(3)碰撞電離
在電場中獲得加速的電子在和氣體分子碰撞時,可以把自己的動能轉給后者而引起碰撞電離。
電子在電場強度為E的電場中移過x的距離時所獲得的動能為

式中 m——電子的質量;
qe——電子電荷量。
如果W等于或大于氣體分子的電離能Wi,該電子就有足夠的能量去完成碰撞電離。由此可以得出電子引起碰撞電離的條件應為

電子為造成碰撞電離而必須飛越的最小距離(式中,Ui為氣體的電離電位,在數值上與以eV為單位的Wi相等),xi的大小取決于場強E,增大氣體中的場強將使xi值減小,可見提高外加電壓將使碰撞電離的概率和強度增大。
碰撞電離是氣體中產生帶電粒子的最重要的方式。應該強調的是,主要的碰撞電離均由電子完成,離子碰撞中性分子并使之電離的概率要比電子小得多,所以在分析氣體放電發展過程時,往往只考慮電子所引起的碰撞電離。
(4)電極表面的電離
除了前面所說的發生在氣體中的空間電離外,氣體中的帶電粒子還可能來自電極表面上的電離。
電子從金屬表面逸出需要一定的能量,稱為逸出功。各種金屬的逸出功是不同的,見表1-2。
表1-2 某些金屬的逸出功

將表1-2與表1-1作比較,就可看出:金屬的逸出功要比氣體分子的電離能小得多,這表明,金屬表面電離比氣體空間電離更易發生。在不少場合,陰極表面電離(也可稱電子發射)在氣體放電過程中起著相當重要的作用。隨著外加能批形式的不同,陰極的表面電離可在下列情況下發生:
1)正離子撞擊陰極表面:正離子所具有的能量為其動能與勢能之和,其勢能等于氣體的電離能Wi。通常正離子的動能不大,如忽略不計,那么只有在它的勢能等于或大于陰極材料的逸出功的兩倍時,才能引起陰極表面的電子發射,因為首先要從金屬表面拉出一個電子,使之和正離子結合成一個中性分子,正離子才能釋放出全部勢能而引起更多的電子從金屬表面逸出。比較一下表1-1與表1-2中的數據,不難看出,這個條件是可能滿足的。
2)光電子發射:高能輻射線照射陰極時,會引起光電子發射,其條件是光子的能批應大于金屬的逸出功。由于金屬的逸出功要比氣體的電離能小得多,所以紫外線已能引起陰極的表面電離。
3)熱電子發射:金屬中的電子在高溫下也能獲得足夠的動能而從金屬表面逸出,稱為熱電子發射。在許多電子和離子器件中常利用加熱陰極來實現電子發射。
4)強場發射(冷發射):當陰極表面附近空間存在很強的電場時(106V/cm數量級),也能使陰極發射電子。一般常態氣隙的擊穿場強遠小于此值,所以在常態氣隙的擊穿過程中完全不受強場發射的影響;但在高氣壓下、特別是在壓縮的高電氣強度氣體的擊穿過程中,強場發射也可能會起一定的作用;而在真空的擊穿過程中,它更起著決定性作用。
3.負離子的形成
當電子與氣體分子碰撞時,不但有可能引起碰撞電離而產生出正離子和新電子,而且也可能會發生電子與中性分子相結合而形成負離子的情況,這種過程稱為附著。
某些氣體分子對電子有親合性,因而在它們與電子結合成負離子時會放出能量(電子親合能),而另一些氣體分子要與電子結成負離子時卻必須吸收能量。前者的親合能為正值,這些易于產生負離子的氣體稱為電負性氣體。親合性越強的氣體分子越易俘獲電子而變成負離子。
應該指出:負離子的形成并沒有使氣體中的帶電粒子數改變,但卻能使自由電子數減少,因而對氣體放電的發展起抑制作用。空氣中的氧氣和水汽分子對電子都有一定的親合性,但還不是太強;而后面將要介紹的某些特殊的電負性氣體(例如,SF6)對電子具有很強的親合性,其電氣強度遠大于一般氣體,因而被稱為高電氣強度氣體。
4.帶電粒子的消失
氣體中帶電粒子的消失可有下述幾種情況:
1)帶電粒子在電場的驅動下作定向運動,在到達電極時,消失于電極上而形成外電路中的電流;
2)帶電粒子因擴散現象而逸出氣體放電空間;
3)帶電粒子的復合。
當氣體中帶異號電荷的粒子相遇時,有可能發生電荷的傳遞與中和,這種現象稱為復合,它是與電離相反的一種物理過程。復合可能發生在電子和正離子之間,稱為電子復合,其結果是產生了一個中性分子;復合也可能發生在正離子和負離子之間,稱為離子復合,其結果是產生了兩個中性分子。上述兩種復合都會以光子的形式放出多余的能量,這種光輻射在一定條件下能導致其他氣體分子的電離,使氣體放電出現跳躍式的發展。
帶電粒子的復合強度與正、負帶電粒子的濃度有關,濃度越大,則復合也進行得越激烈。每立方厘米的常態空氣中經常存在著500~1000對正、負帶電粒子,它們是外界電離因子(高能輻射線)使空氣分子發生電離和產生出來的正、負帶電粒子又不斷地復合所達到的一種動態平衡。