官术网_书友最值得收藏!

3.1 正弦交流電基本概念

電路中電流及電壓等物理量,就其隨時間變化規律來看,主要分兩大類:一類是直流電,其大小和方向都不隨時間變化;另一類是交流電,其大小和方向都隨時間做周期性變化,且在一個周期內,其平均值為零。在交流電中,正弦交流電應用最為廣泛,其大小隨時間按正弦規律變化,其波形如圖3.1.1所示。

圖3.1.1 正弦交流電波形圖

以正弦交流電源為激勵,正弦交流電流過的電路稱為正弦交流電路。下面敘述的交流電和交流電路,如無特殊說明,通常指正弦交流電和正弦交流電路。

正弦交流電之所以獲得廣泛應用是因為:第一,交流電容易產生、轉化和傳輸,即交流發電機構造簡單、性能良好、效率高。交流電使用變壓器改變電壓大小,既能方便經濟地實現遠距離輸電(升高交流電壓),又能保證用電安全(降低交流電壓)。第二,利用電子整流設備可以很方便地將交流電轉化成直流電。第三,從分析計算角度看,正弦周期函數是最簡單的周期函數。其他非正弦周期電量均可按傅里葉級數分解為直流分量及不同頻率的正弦分量之和。因此,只要掌握正弦電路的分析方法,就可以用疊加定理去分析線性非正弦周期電流電路。

3.1.1 正弦交流電三要素

正弦交流電的物理量數值隨時間按正弦規律變化。圖3.1.1所示為正弦交流電流i的波形,其對應的數學表達式為

式(3.1.1)稱為正弦電流瞬時值表達式。利用瞬時值表達式可以計算任一瞬時該正弦電流的數值。該式表明,可用頻率f(周期T或角頻率ω)、幅值Im和初相位φ表示正弦交流電特性,這三個量稱為正弦交流電三要素。

正弦交流電變化的快慢可用周期、頻率或角頻率來表示。

1.周期T

正弦量變化一個循環所需要的時間稱為周期,用大寫字母T來表示,單位是秒(s)。

2.頻率f

單位時間內正弦量變化的次數稱為頻率。用小寫字母f來表示,單位是赫茲(Hz),1Hz=1周/s。根據上述定義可知,頻率與周期互為倒數,即

在我國,發電廠提供的正弦交流電頻率是f=50 Hz,周期T==0.02 s。這一頻率稱為工業標準頻率,簡稱工頻。世界上還有很多國家工頻也是50 Hz,也有少數國家(如美國、日本)采用60 Hz工業頻率。除了工業頻率,其他領域采用不同頻率。如電熱方面,中頻爐頻率為500~8000 Hz,高頻爐頻率為200~300 kHz;無線電通信頻率為30 kHz~30 GHz,有線通信頻率為300~5000 Hz。

3.角頻率ω

正弦量變化的快慢用角頻率ω來表示。正弦量變化一周相當于變化2π弧度,角頻率ω就是正弦電量在單位時間(1s)內變化的角度,即

角頻率單位是弧度/秒(rad/s),工頻交流電的角頻率是314rad/s。

如圖3.1.1所示交流電波形圖,其橫坐標軸既可以用時間t(s)來表示,也可以用電角度ωt來表示,一個周期時間T與2π弧度相對應。

3.1.2 正弦交流電相位差

1.相位和初相位

正弦交流電表達式中,ωt+φ叫作交流電的相位角,簡稱相位。它反映正弦變量隨時間變化的進程,決定它在每一瞬時的狀態。當t=0時,正弦電量的相位角φ稱為初相角,又稱初相位,它是確定交流電初始狀態的物理量。由于正弦電是周期性變化的,所以初相角一般都在絕對值不超過π的范圍內取值,取|φ|

≤π。

2.相位差

在同一線性電路中,若電源都是同頻率正弦交流電,則各支路電流、電壓也都是同頻率的正弦電。但它們隨時間變化的進程不同,為了描述同頻率交流電隨時間變化的進程,引入相位差概念。

兩個同頻率正弦交流電的相位之差稱為相位差,用字母φ來表示。例如,正弦電壓u=Umsin(ωt+φu),正弦電流i=Imsin(ωt+φi),則ui相位差為

可見,兩個同頻率正弦交流電的相位差就是它們初相位之差。

假設有兩個同頻率正弦量ui初相位分別是φuφi,則兩個同頻率正弦量的相位關系有如下幾種情況。

1)當φu>φi時,相位差φ=φui>0,波形如圖3.1.2a所示。從波形圖可見,u總是比i先達到零點和正的最大值,即u的變化領先于i,稱u在相位上超前i一個相位角φ,或者說i滯后于u一個相位角φ。

2)當φu<φi時,相位差φ=φui<0,波形如圖3.1.2b所示。此時u滯后i一個相位角φ,也就是i超前于u一個相位角φ

3)當φu=φi時,它們之間相位差為0,波形如圖3.1.2c所示。此時ui變化一致,同增同減,即同時達到正弦電量的零點和正、負最大值,稱ui同相。

圖3.1.2 同頻率正弦量的相位差

a)u超前i b)i超前u c)ui同相 d)ui反相

4)當φ=φui=±π時,波形如圖3.1.2d示,此時ui的相位相反,稱為反相。

通過分析可知,當選擇不同計時起點時,正弦交流電的初相角會不同,但是兩個同頻率正弦量之間的相位差則與計時起點無關。特別強調:不同頻率正弦量之間沒有確定的相位差,也無法確定它們之間的超前或滯后關系。因此,討論它們之間的相位差沒有意義。

3.1.3 正弦交流電有效值

正弦量大小通常用瞬時值、最大值和有效值三個物理量來表示。

1.瞬時值

瞬時值是指某一時刻正弦量的大小,用小寫字母表示,如i、u等,它們都是時間函數。

2.最大值

最大值是指正弦量在一個周期中的最大瞬時值,它是交流電波形的振幅,通常用大寫字母并加注下標m來表示,如ImUm等。

3.有效值

交流電i和直流電I分別流過阻值相同的電阻,如果在一個周期內它們所產生的熱量相等,即其熱效應相等,就稱該直流電流數值是交流電流的有效值。交流電有效值用大寫字母IU表示。在實際應用中,用瞬時值或最大值來表示交流電在電路中產生的效果既不確切,又不方便,通常使用“有效值”來表示正弦交流電的實際效果。

正弦交流電i流過電阻R時,在一個周期T內消耗的電能為

直流電流I在相同時間內消耗的電能為

W=PT=I2RT

根據定義,兩者產生的熱量相等,即

由此得到正弦交流電有效值為

由式(3.1.5)可知,交流電有效值又稱為均方根值。需要指出,式(3.1.5)不僅適用于正弦電,而且適用于任何交流電有效值的計算。

對于正弦交流電流i=Imsin(ωt+φi),根據式(3.1.5),可算出電流有效值為

以上關系同樣適用于計算正弦電壓的有效值,即

正弦電有效值分別是其最大值的或0.707倍。

在實際應用中,一般說的交流電量的大小,都是指它的有效值。如民用交流電壓是220V,低壓動力電壓是380V,均為有效值。各種交流電機、電氣設備銘牌標注的電壓、電流數值以及交流電壓表、電流表示數等都是有效值。一般只有在分析電氣設備,如電路元件耐壓絕緣能力時,才用到最大值。因為電氣設備,如晶體管、電容器等電子元器件都有一定的耐壓值,當工作電壓超過耐壓值時,就會使設備或元器件絕緣材料被擊穿損壞,所以在交流電路中工作的電氣設備和元器件,其耐壓值應當按高于交流電壓最大值來選擇。

特別提示

對正弦量的數學描述可采用sin函數或cos函數,本書統一規定采用sin函數。在進行交流電路分析和計算時,同一電路中的電壓、電流和電動勢只能有一個共同計時起點,所以通常用其中任一正弦量的初相位為零的瞬間作為計時起點,初相位為零的正弦量就稱為參考正弦量,其他量的初相位就不一定為零。初相位和相位差的主值區間為[-π,+π]。

練習與思考

1)已知uabt)=100sint以s為單位),指出uab的幅值、有效值、周期、頻率、角頻率及初相位,并畫出波形圖。

2)已知u1t)=30sin(ωt+90°)V,u2t)=25cos(ωt-45°)V,u3t)=20sinωtV,試畫出它們的波形圖,并比較它們的相位。

主站蜘蛛池模板: 丹巴县| 枣阳市| 呼玛县| 墨脱县| 富顺县| 临湘市| 明溪县| 扎兰屯市| 青州市| 来安县| 呼伦贝尔市| 正镶白旗| 长宁县| 武隆县| 平和县| 墨玉县| 德江县| 洛阳市| 香港| 旅游| 个旧市| 鄂托克旗| 习水县| 敦化市| 越西县| 玉门市| 突泉县| 宜丰县| 彭阳县| 黄浦区| 会同县| 固原市| 大城县| 南雄市| 贺州市| 武宣县| 军事| 方山县| 宣城市| 扶沟县| 贡觉县|