官术网_书友最值得收藏!

Plotting with polar coordinates

All the plots in this chapter up to now have implicitly used rectangular coordinates, usually denoted as x and y. For certain types of information, however, polar geometry is the natural coordinate system. In polar coordinates we have a radius, r, measured from the origin, usually at the center of the graph, and an angle, θ, usually measured counter-clockwise from the horizontal. On the gnuplot command line, the angular coordinate is called t by default. The following is an example of a spiral illustration:

Plotting with polar coordinates

Using polar coordinates we can plot spirals and closed curves that are impossible to define explicitly using rectangular coordinates.

How to do it…

Following is an example of how to use polar coordinates to get the spiral shown in the previous illustration:

set xtics axis nomirror
set ytics axis nomirror
set zeroaxis
unset border
set samples 500
set polar
plot [0:12*pi] t

How it works…

The first three lines create a pair of axes that intersect at the origin in the center of the graph. This works for polar plots too, where we are measuring the radius from the center. The unset border line removes the frame that has served up to now as axes for our rectangular coordinate plots. Next, we increase the number of samples for a smooth plot. The crucial, highlighted line set polar changes to polar (r-θ) coordinates from the default rectangular (x-y). In the plot command, t is now a dummy variable that passes through the given angular range (default [0:2*pi], changed to [0:12*pi] here), and the provided function (r) is a function of t, in this case the identity, that yields a circular spiral.

主站蜘蛛池模板: 确山县| 屏东市| 会宁县| 瑞昌市| 巩义市| 天镇县| 甘泉县| 大洼县| 忻城县| 宁武县| 衡山县| 安乡县| 游戏| 天全县| 曲周县| 松溪县| 临潭县| 赣榆县| 扎赉特旗| 旅游| 上林县| 台中市| 泰宁县| 晋宁县| 建宁县| 蛟河市| 游戏| 略阳县| 英德市| 宕昌县| 通道| 防城港市| 永新县| 博白县| 绍兴市| 汉源县| 延安市| 平和县| 利辛县| 玉门市| 房产|