官术网_书友最值得收藏!

Contrasting enhancement using imadjust

A more gentle method for contrast enhancement is using imadjust. In its default form, this function maps pixel values in the original image to new, altered values while ensuring that only a small percentage (1 percent) of the values are saturated at low and high intensities of the original image. This results in a smoother transformation that mostly enhances useful details. We can see the result of applying this method if we add some more lines to our previous script:

img = imread('my_image.bmp');
img_eq = histeq(img);
img_adj = imadjust(img);
subplot(2,3,1),imshow(img),title('Original Image');
subplot(2,3,2),imshow(img_eq),title('Equalized Image');
subplot(2,3,3),imshow(img_adj),title('Adjusted Intensity Image');
subplot(2,3,4),imhist(img,64),title('Original Image Histogram');
subplot(2,3,5),imhist(img_eq,64),title('Equalized Image Histogram');
subplot(2,3,6),imhist(img_adj,64),title('Adjusted Image Histogram');

If we save this script as HisteqVsImadjust.m and execute it, we get the following screenshot:

It is obvious just by looking at the histograms, that imadjust stretches the histogram of the image, while histeq spreads it almost evenly. This is why the result of imadjust looks more natural.

In case we want more control over the final result, we can either tweak the methods used by defining more inputs that adjust the settings. For instance, we can provide a target histogram in histeq or a set of lower and higher limits for values that we want to clip in imadjust. You can play with these settings by using Help to see how the two functions can be used with extra inputs and then experiment with different input values.

主站蜘蛛池模板: 余姚市| 布拖县| 浦北县| 吉安市| 荔浦县| 东阿县| 锡林浩特市| 米易县| 江油市| 虎林市| 罗山县| 焦作市| 南岸区| 平乡县| 山西省| 静安区| 宁夏| 珲春市| 德令哈市| 定安县| 北安市| 铜梁县| 柳河县| 乐至县| 和田县| 沙河市| 济南市| 五峰| 县级市| 江达县| 顺义区| 阜城县| 彰化县| 竹山县| 沁阳市| 元江| 邛崃市| 宁国市| 兰西县| 永平县| 安吉县|