官术网_书友最值得收藏!

Contrasting enhancement using imadjust

A more gentle method for contrast enhancement is using imadjust. In its default form, this function maps pixel values in the original image to new, altered values while ensuring that only a small percentage (1 percent) of the values are saturated at low and high intensities of the original image. This results in a smoother transformation that mostly enhances useful details. We can see the result of applying this method if we add some more lines to our previous script:

img = imread('my_image.bmp');
img_eq = histeq(img);
img_adj = imadjust(img);
subplot(2,3,1),imshow(img),title('Original Image');
subplot(2,3,2),imshow(img_eq),title('Equalized Image');
subplot(2,3,3),imshow(img_adj),title('Adjusted Intensity Image');
subplot(2,3,4),imhist(img,64),title('Original Image Histogram');
subplot(2,3,5),imhist(img_eq,64),title('Equalized Image Histogram');
subplot(2,3,6),imhist(img_adj,64),title('Adjusted Image Histogram');

If we save this script as HisteqVsImadjust.m and execute it, we get the following screenshot:

It is obvious just by looking at the histograms, that imadjust stretches the histogram of the image, while histeq spreads it almost evenly. This is why the result of imadjust looks more natural.

In case we want more control over the final result, we can either tweak the methods used by defining more inputs that adjust the settings. For instance, we can provide a target histogram in histeq or a set of lower and higher limits for values that we want to clip in imadjust. You can play with these settings by using Help to see how the two functions can be used with extra inputs and then experiment with different input values.

主站蜘蛛池模板: 广安市| 蚌埠市| 兴山县| 正宁县| 稻城县| 苍梧县| 铜陵市| 华蓥市| 时尚| 罗江县| 吉安县| 绿春县| 广德县| 博湖县| 涡阳县| 册亨县| 兴安盟| 南乐县| 深泽县| 翁牛特旗| 简阳市| 密云县| 邵阳县| 嘉兴市| 明溪县| 恩平市| 西乡县| 定西市| 延安市| 普洱| 安宁市| 安丘市| 海伦市| 建阳市| 常山县| 安庆市| 河曲县| 彩票| 南城县| 合山市| 图们市|