- Practical Data Analysis Cookbook
- Tomasz Drabas
- 113字
- 2021-07-16 11:13:50
Chapter 1. Preparing the Data
In this chapter, we will cover the basic tasks of reading, storing, and cleaning data using Python and OpenRefine. You will learn the following recipes:
- Reading and writing CSV/TSV files with Python
- Reading and writing JSON files with Python
- Reading and writing Excel files with Python
- Reading and writing XML files with Python
- Retrieving HTML pages with pandas
- Storing and retrieving from a relational database
- Storing and retrieving from MongoDB
- Opening and transforming data with OpenRefine
- Exploring the data with OpenRefine
- Removing duplicates
- Using regular expressions and GREL to clean up the data
- Imputing missing observations
- Normalizing and standardizing features
- Binning the observations
- Encoding categorical variables
推薦閱讀
- Drupal 8 Blueprints
- CentOS 7 Linux Server Cookbook(Second Edition)
- Network Automation Cookbook
- 面向對象程序設計(Java版)
- 零基礎輕松學SQL Server 2016
- Expert Data Visualization
- 大學計算機基礎實驗指導
- Oracle 18c 必須掌握的新特性:管理與實戰
- Integrating Facebook iOS SDK with Your Application
- Cocos2d-x by Example:Beginner's Guide(Second Edition)
- SQL Server 2016 從入門到實戰(視頻教學版)
- 零基礎學C語言(升級版)
- 區塊鏈架構之美:從比特幣、以太坊、超級賬本看區塊鏈架構設計
- Clojure Web Development Essentials
- C語言程序設計教程