- Practical Data Analysis Cookbook
- Tomasz Drabas
- 113字
- 2021-07-16 11:13:50
Chapter 1. Preparing the Data
In this chapter, we will cover the basic tasks of reading, storing, and cleaning data using Python and OpenRefine. You will learn the following recipes:
- Reading and writing CSV/TSV files with Python
- Reading and writing JSON files with Python
- Reading and writing Excel files with Python
- Reading and writing XML files with Python
- Retrieving HTML pages with pandas
- Storing and retrieving from a relational database
- Storing and retrieving from MongoDB
- Opening and transforming data with OpenRefine
- Exploring the data with OpenRefine
- Removing duplicates
- Using regular expressions and GREL to clean up the data
- Imputing missing observations
- Normalizing and standardizing features
- Binning the observations
- Encoding categorical variables
推薦閱讀
- Microsoft Exchange Server PowerShell Cookbook(Third Edition)
- Web Scraping with Python
- UI智能化與前端智能化:工程技術(shù)、實(shí)現(xiàn)方法與編程思想
- Learning Laravel 4 Application Development
- Visual Basic學(xué)習(xí)手冊(cè)
- Interactive Applications Using Matplotlib
- PhpStorm Cookbook
- 精通Python自然語言處理
- C#程序設(shè)計(jì)基礎(chǔ):教程、實(shí)驗(yàn)、習(xí)題
- 利用Python進(jìn)行數(shù)據(jù)分析(原書第3版)
- Extending Puppet(Second Edition)
- Unity 2D Game Development Cookbook
- Python圖形化編程(微課版)
- Mobile Device Exploitation Cookbook
- 0 bug:C/C++商用工程之道