官术网_书友最值得收藏!

Drawing a Bezier curve

A Bezier curve is different from a quadratic curve. It is also known as a cubic curve and is the most advanced curvature available in HTML5. The simple Bezier curve looks as shown in the output of this recipe:

Drawing a Bezier curve

How to do it...

The recipe is as follows:

<html>

<head>
 
<title>A Bezier Curve</title>
<script>
  function init()
  {
    can  = document.getElementById("MyCanvasArea"); 
    ctx = can.getContext("2d");
    var xstart = 50;   var ystart = 50;
    var xctrl1 = 100;  var yctrl1 = 35;
    var xctrl2 = 100;  var yctrl2 = 95;
    var xend = 180;  var yend = ystart;
    //call to the function
    drawBezierCurve(xstart,ystart,xctrl1,yctrl1,xctrl2,yctrl2,xend,yend,"black",10);
  }
  function drawBezierCurve(xstart,ystart,xctrl1,yctrl1,xctrl2,yctrl2,xend,yend,color,width)

  {   

    ctx.strokeStyle=color;

    ctx.lineWidth=width;
    ctx.beginPath();
    ctx.moveTo(xstart,ystart);
    ctx.bezierCurveTo(xctrl1,yctrl1,xctrl2,yctrl2,xend,yend);
    ctx.stroke();           
  }
</script>
</head> 
<body onload="init()"> 

  <canvas id="MyCanvasArea" width ="300"  height="200" style="border:2px solid black">

    Your browser doesn't currently support HTML5 Canvas.

  </canvas> 
</body>
</html>

How it works...

In a Bezier curve there are two control points, one start point and one end point. So you have to move to the starting or context point, like we do in a quadratic curve, and then specify the control points and ending point in the bezierCurveTo(cp1X,cp1Y,cp2X,cp2Y,epX,epY) method. Here, cp1 and cp2 are the control points and ep is the end point. The two control points add more flexibility to the curve.

Refer to the diagram given here:

How it works...

The curve starts at the start/context point and ends at the end point. It heads towards control point 1 and then comes down to the end point through control point 2. The control points control the curvature. Change the y coordinate of any control point and you will see the difference.

Bezier curves are actually a sequence of cubic segments rather than linear segments. They appear smooth at all scales and are used in computer graphics.

主站蜘蛛池模板: 琼中| 灵川县| 昌图县| 珲春市| 闽清县| 聂拉木县| 龙岩市| 本溪| 青冈县| 云安县| 共和县| 海林市| 连城县| 栾川县| 松潘县| 手游| 西乌珠穆沁旗| 怀来县| 武隆县| 民乐县| 安国市| 肇东市| 临西县| 四子王旗| 余姚市| 赣榆县| 内丘县| 玛多县| 大渡口区| 买车| 陕西省| 东兴市| 永安市| 济南市| 江源县| 湘西| 平昌县| 桦川县| 理塘县| 阳城县| 县级市|