官术网_书友最值得收藏!

Drawing a Bezier curve

A Bezier curve is different from a quadratic curve. It is also known as a cubic curve and is the most advanced curvature available in HTML5. The simple Bezier curve looks as shown in the output of this recipe:

Drawing a Bezier curve

How to do it...

The recipe is as follows:

<html>

<head>
 
<title>A Bezier Curve</title>
<script>
  function init()
  {
    can  = document.getElementById("MyCanvasArea"); 
    ctx = can.getContext("2d");
    var xstart = 50;   var ystart = 50;
    var xctrl1 = 100;  var yctrl1 = 35;
    var xctrl2 = 100;  var yctrl2 = 95;
    var xend = 180;  var yend = ystart;
    //call to the function
    drawBezierCurve(xstart,ystart,xctrl1,yctrl1,xctrl2,yctrl2,xend,yend,"black",10);
  }
  function drawBezierCurve(xstart,ystart,xctrl1,yctrl1,xctrl2,yctrl2,xend,yend,color,width)

  {   

    ctx.strokeStyle=color;

    ctx.lineWidth=width;
    ctx.beginPath();
    ctx.moveTo(xstart,ystart);
    ctx.bezierCurveTo(xctrl1,yctrl1,xctrl2,yctrl2,xend,yend);
    ctx.stroke();           
  }
</script>
</head> 
<body onload="init()"> 

  <canvas id="MyCanvasArea" width ="300"  height="200" style="border:2px solid black">

    Your browser doesn't currently support HTML5 Canvas.

  </canvas> 
</body>
</html>

How it works...

In a Bezier curve there are two control points, one start point and one end point. So you have to move to the starting or context point, like we do in a quadratic curve, and then specify the control points and ending point in the bezierCurveTo(cp1X,cp1Y,cp2X,cp2Y,epX,epY) method. Here, cp1 and cp2 are the control points and ep is the end point. The two control points add more flexibility to the curve.

Refer to the diagram given here:

How it works...

The curve starts at the start/context point and ends at the end point. It heads towards control point 1 and then comes down to the end point through control point 2. The control points control the curvature. Change the y coordinate of any control point and you will see the difference.

Bezier curves are actually a sequence of cubic segments rather than linear segments. They appear smooth at all scales and are used in computer graphics.

主站蜘蛛池模板: 奉贤区| 阳谷县| 金昌市| 呼玛县| 高邑县| 古丈县| 东丰县| 松潘县| 武乡县| 龙陵县| 库伦旗| 龙里县| 大庆市| 息烽县| 深州市| 九江市| 思茅市| 汾阳市| 宁乡县| 江口县| 师宗县| 白河县| 泉州市| 高州市| 佛坪县| 鸡泽县| 溧水县| 鄂托克旗| 佛冈县| 济源市| 胶南市| 思茅市| 福建省| 通辽市| 屏东市| 刚察县| 景洪市| 聂拉木县| 五家渠市| 东城区| 兴山县|