- Learning Probabilistic Graphical Models in R
- David Bellot
- 118字
- 2021-07-16 11:02:44
Conventions
In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can also mention the arm
package, which provides Bayesian versions of glm()
and polr()
and implements hierarchical models."
Any command-line input or output is written as follows:
pred_sigma <- sqrt(sigma^2 + apply((T%*%posterior_sigma)*T, MARGIN=1, FUN=sum)) upper_bound <- T%*%posterior_beta + qnorm(0.95)*pred_sigma lower_bound <- T%*%posterior_beta - qnorm(0.95)*pred_sigma
推薦閱讀
- 碼上行動:零基礎學會Python編程(ChatGPT版)
- The HTML and CSS Workshop
- Oracle Exadata專家手冊
- JavaCAPS基礎、應用與案例
- Getting Started with LLVM Core Libraries
- PLC應用技術(三菱FX2N系列)
- 利用Python進行數據分析
- Python深度學習原理、算法與案例
- Building Wireless Sensor Networks Using Arduino
- 響應式Web設計:HTML5和CSS3實戰(第2版)
- Creating Data Stories with Tableau Public
- 青少年Python趣味編程
- Unity 3D UI Essentials
- HTML5/CSS3/JavaScript技術大全
- TensorFlow.NET實戰