- Learning Probabilistic Graphical Models in R
- David Bellot
- 118字
- 2021-07-16 11:02:44
Conventions
In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can also mention the arm
package, which provides Bayesian versions of glm()
and polr()
and implements hierarchical models."
Any command-line input or output is written as follows:
pred_sigma <- sqrt(sigma^2 + apply((T%*%posterior_sigma)*T, MARGIN=1, FUN=sum)) upper_bound <- T%*%posterior_beta + qnorm(0.95)*pred_sigma lower_bound <- T%*%posterior_beta - qnorm(0.95)*pred_sigma
推薦閱讀
- C++程序設(shè)計教程
- SQL Server 從入門到項目實踐(超值版)
- 零基礎(chǔ)PHP學習筆記
- Visual Basic編程:從基礎(chǔ)到實踐(第2版)
- C# Programming Cookbook
- 區(qū)塊鏈架構(gòu)與實現(xiàn):Cosmos詳解
- Hands-On Microservices with Kotlin
- 軟件架構(gòu):Python語言實現(xiàn)
- OpenShift在企業(yè)中的實踐:PaaS DevOps微服務(wù)(第2版)
- WordPress 4.0 Site Blueprints(Second Edition)
- Java編程的邏輯
- SQL Server 2008 R2數(shù)據(jù)庫技術(shù)及應(yīng)用(第3版)
- OpenCV 3 Blueprints
- Clojure High Performance Programming(Second Edition)
- Java Web開發(fā)教程:基于Struts2+Hibernate+Spring