- Learning Probabilistic Graphical Models in R
- David Bellot
- 118字
- 2021-07-16 11:02:44
Conventions
In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can also mention the arm
package, which provides Bayesian versions of glm()
and polr()
and implements hierarchical models."
Any command-line input or output is written as follows:
pred_sigma <- sqrt(sigma^2 + apply((T%*%posterior_sigma)*T, MARGIN=1, FUN=sum)) upper_bound <- T%*%posterior_beta + qnorm(0.95)*pred_sigma lower_bound <- T%*%posterior_beta - qnorm(0.95)*pred_sigma
推薦閱讀
- 手機安全和可信應用開發指南:TrustZone與OP-TEE技術詳解
- Python量化投資指南:基礎、數據與實戰
- PHP程序設計(慕課版)
- 算法訓練營:入門篇(全彩版)
- 編寫高質量代碼:改善Python程序的91個建議
- Mastering matplotlib
- Eclipse Plug-in Development:Beginner's Guide(Second Edition)
- Mastering Ext JS
- 從Excel到Python:用Python輕松處理Excel數據(第2版)
- Learning Vaadin 7(Second Edition)
- Python語言實用教程
- Advanced Express Web Application Development
- Babylon.js Essentials
- Android驅動開發權威指南
- INSTANT Yii 1.1 Application Development Starter