舉報

會員
Learning Probabilistic Graphical Models in R
最新章節(jié):
Index
Thisbookisforanyonewhohastodealwithlotsofdataanddrawconclusionsfromit,especiallywhenthedataisnoisyoruncertain.Datascientists,machinelearningenthusiasts,engineers,andthosewhocuriousaboutthelatestadvancesinmachinelearningwillfindPGMinteresting.
目錄(60章)
倒序
- coverpage
- Learning Probabilistic Graphical Models in R
- Credits
- About the Author
- About the Reviewers
- www.PacktPub.com
- eBooks discount offers and more
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Chapter 1. Probabilistic Reasoning
- Machine learning
- Representing uncertainty with probabilities
- Probabilistic graphical models
- Summary
- Chapter 2. Exact Inference
- Building graphical models
- Variable elimination
- Sum-product and belief updates
- The junction tree algorithm
- Examples of probabilistic graphical models
- Summary
- Chapter 3. Learning Parameters
- Introduction
- Learning by inference
- Maximum likelihood
- Learning with hidden variables – the EM algorithm
- Principles of the EM algorithm
- Summary
- Chapter 4. Bayesian Modeling – Basic Models
- The Naive Bayes model
- Beta-Binomial
- The Gaussian mixture model
- Summary
- Chapter 5. Approximate Inference
- Sampling from a distribution
- Basic sampling algorithms
- Rejection sampling
- Importance sampling
- Markov Chain Monte-Carlo
- MCMC for probabilistic graphical models in R
- Summary
- Chapter 6. Bayesian Modeling – Linear Models
- Linear regression
- Bayesian linear models
- Summary
- Chapter 7. Probabilistic Mixture Models
- Mixture models
- EM for mixture models
- Mixture of Bernoulli
- Mixture of experts
- Latent Dirichlet Allocation
- Summary
- Appendix A. Appendix
- References
- Index 更新時間:2021-07-16 11:02:58
推薦閱讀
- Python概率統(tǒng)計
- Power Up Your PowToon Studio Project
- 概率成形編碼調(diào)制技術(shù)理論及應(yīng)用
- OpenStack Orchestration
- Windows Embedded CE 6.0程序設(shè)計實戰(zhàn)
- 編寫高質(zhì)量代碼:改善Objective-C程序的61個建議
- Android Sensor Programming By Example
- ASP.NET Web API Security Essentials
- Machine Learning for OpenCV
- Python機器學(xué)習(xí)與量化投資
- Kotlin語言實例精解
- React and React Native
- Git Version Control Cookbook
- The C++ Workshop
- Ionic Cookbook
- R語言
- 深入理解TypeScript
- SQL Server 2014從入門到精通
- 區(qū)塊鏈智能合約安全入門
- Photoshop圖像處理與平面設(shè)計案例教程(第2版)
- Web前端學(xué)習(xí)筆記:HTML5+CSS3+JavaScript
- Go微服務(wù)實戰(zhàn)
- IBM Informix 11.x系統(tǒng)管理與開發(fā)指南
- Haskell High Performance Programming
- Mastering Numerical Computing with NumPy
- Apache Spark 2:Data Processing and Real-Time Analytics
- Kali Linux 2:Windows Penetration Testing
- Oracle Solaris 11:First Look
- 程序是怎樣跑起來的
- 從零開始學(xué)Scrapy網(wǎng)絡(luò)爬蟲(視頻教學(xué)版)