官术网_书友最值得收藏!

Array functions

Many helpful array functions are supported in NumPy for analyzing data. We will list some part of them that are common in use. Firstly, the transposing function is another kind of reshaping form that returns a view on the original data array without copying anything:

>>> a = np.array([[0, 5, 10], [20, 25, 30]])
>>> a.reshape(3, 2)
array([[0, 5], [10, 20], [25, 30]])
>>> a.T
array([[0, 20], [5, 25], [10, 30]])

In general, we have the swapaxes method that takes a pair of axis numbers and returns a view on the data, without making a copy:

>>> a = np.array([[[0, 1, 2], [3, 4, 5]], 
 [[6, 7, 8], [9, 10, 11]]])
>>> a.swapaxes(1, 2)
array([[[0, 3],
 [1, 4],
 [2, 5]],
 [[6, 9],
 [7, 10],
 [8, 11]]])

The transposing function is used to do matrix computations; for example, computing the inner matrix product XT.X using np.dot:

>>> a = np.array([[1, 2, 3],[4,5,6]])
>>> np.dot(a.T, a)
array([[17, 22, 27],
 [22, 29, 36],
 [27, 36, 45]])

Sorting data in an array is also an important demand in processing data. Let's take a look at some sorting functions and their use:

>>> a = np.array ([[6, 34, 1, 6], [0, 5, 2, -1]])

>>> np.sort(a) # sort along the last axis
array([[1, 6, 6, 34], [-1, 0, 2, 5]])

>>> np.sort(a, axis=0) # sort along the first axis
array([[0, 5, 1, -1], [6, 34, 2, 6]])

>>> b = np.argsort(a) # fancy indexing of sorted array
>>> b
array([[2, 0, 3, 1], [3, 0, 2, 1]])
>>> a[0][b[0]]
array([1, 6, 6, 34])

>>> np.argmax(a) # get index of maximum element
1

See the following table for a listing of array functions:

主站蜘蛛池模板: 富裕县| 新源县| 清徐县| 松潘县| 华安县| 玉门市| 华安县| 蓝田县| 德化县| 区。| 年辖:市辖区| 广水市| 津南区| 阆中市| 鹤岗市| 池州市| 美姑县| 宁河县| 区。| 渑池县| 陆河县| 札达县| 哈巴河县| 东丰县| 邹平县| 恩平市| 新宁县| 密山市| 昌图县| 淮安市| 泰顺县| 高平市| 湖州市| 天镇县| 仁布县| 德兴市| 新乡县| 临西县| 米脂县| 宁津县| 铁岭县|