- Python:Data Analytics and Visualization
- Phuong Vo.T.H Martin Czygan Ashish Kumar Kirthi Raman
- 279字
- 2021-07-09 18:51:37
Array functions
Many helpful array functions are supported in NumPy for analyzing data. We will list some part of them that are common in use. Firstly, the transposing function is another kind of reshaping form that returns a view on the original data array without copying anything:
>>> a = np.array([[0, 5, 10], [20, 25, 30]]) >>> a.reshape(3, 2) array([[0, 5], [10, 20], [25, 30]]) >>> a.T array([[0, 20], [5, 25], [10, 30]])
In general, we have the swapaxes
method that takes a pair of axis numbers and returns a view on the data, without making a copy:
>>> a = np.array([[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]]]) >>> a.swapaxes(1, 2) array([[[0, 3], [1, 4], [2, 5]], [[6, 9], [7, 10], [8, 11]]])
The transposing function is used to do matrix computations; for example, computing the inner matrix product XT.X
using np.dot
:
>>> a = np.array([[1, 2, 3],[4,5,6]]) >>> np.dot(a.T, a) array([[17, 22, 27], [22, 29, 36], [27, 36, 45]])
Sorting data in an array is also an important demand in processing data. Let's take a look at some sorting functions and their use:
>>> a = np.array ([[6, 34, 1, 6], [0, 5, 2, -1]]) >>> np.sort(a) # sort along the last axis array([[1, 6, 6, 34], [-1, 0, 2, 5]]) >>> np.sort(a, axis=0) # sort along the first axis array([[0, 5, 1, -1], [6, 34, 2, 6]]) >>> b = np.argsort(a) # fancy indexing of sorted array >>> b array([[2, 0, 3, 1], [3, 0, 2, 1]]) >>> a[0][b[0]] array([1, 6, 6, 34]) >>> np.argmax(a) # get index of maximum element 1
See the following table for a listing of array functions:



推薦閱讀
- Hands-On Internet of Things with MQTT
- Deep Learning Quick Reference
- Managing Mission:Critical Domains and DNS
- ETL with Azure Cookbook
- 計算機原理
- PyTorch深度學習實戰
- Creo Parametric 1.0中文版從入門到精通
- 網絡組建與互聯
- 步步圖解自動化綜合技能
- Learn CloudFormation
- Mastering Game Development with Unreal Engine 4(Second Edition)
- Excel 2010函數與公式速查手冊
- 人工智能技術入門
- Windows安全指南
- 青少年VEX IQ機器人實訓課程(初級)