- Effective Amazon Machine Learning
- Alexis Perrier
- 80字
- 2021-07-03 00:17:50
Dealing with messy data
As the dataset grows, so do inconsistencies and errors. Whether as a result of human error, system failure, or data structure evolutions, real-world data is rife with invalid, absurd, or missing values. Even when the dataset is spotless, the nature of some variables need to be adapted to the model. We look at the most common data anomalies and characteristics that need to be corrected in the context of Amazon ML linear models.
推薦閱讀
- LibGDX Game Development Essentials
- Hadoop與大數據挖掘(第2版)
- Lean Mobile App Development
- 數據架構與商業智能
- 達夢數據庫運維實戰
- PostgreSQL指南:內幕探索
- INSTANT Android Fragmentation Management How-to
- Mastering ROS for Robotics Programming(Second Edition)
- Oracle 11g+ASP.NET數據庫系統開發案例教程
- 離線和實時大數據開發實戰
- 數據中臺實戰:手把手教你搭建數據中臺
- 數字化轉型實踐:構建云原生大數據平臺
- 數字化轉型方法論:落地路徑與數據中臺
- SQL進階教程(第2版)
- 數據庫基礎與應用