官术网_书友最值得收藏!

  • Deep Learning with Keras
  • Antonio Gulli Sujit Pal
  • 125字
  • 2021-07-02 23:58:02

Activation function — sigmoid

The sigmoid function is defined as follows:

As represented in the following graph, it has small output changes in (0, 1) when the input varies in . Mathematically, the function is continuous. A typical sigmoid function is represented in the following graph:

A neuron can use the sigmoid for computing the nonlinear function . Note that, if  is very large and positive, then , so , while if  is very large and negative  so . In other words, a neuron with sigmoid activation has a behavior similar to the perceptron, but the changes are gradual and output values, such as 0.5539 or 0.123191, are perfectly legitimate. In this sense, a sigmoid neuron can answer maybe.

主站蜘蛛池模板: 三河市| 马龙县| 河间市| 大姚县| 奉化市| 来安县| 外汇| 怀宁县| 凌云县| 南平市| 哈密市| 荥阳市| 克什克腾旗| 沛县| 丹寨县| 保康县| 临漳县| 吉安市| 重庆市| 灵石县| 蒙城县| 长丰县| 贵定县| 永昌县| 德清县| 广饶县| 随州市| 平罗县| 张掖市| 和田县| 工布江达县| 龙门县| 绥阳县| 六盘水市| 荔波县| 大埔县| 淳安县| 黄骅市| 合阳县| 武隆县| 夏邑县|