- Learning Salesforce Einstein
- Mohith Shrivastava
- 395字
- 2021-07-02 21:44:05
Data
In the DASE architecture, data is prepared by two components sequentially--Data Source and Data Preparator.
Data Source takes data from the data store and prepares an RDD [Rating] for the ALS algorithm. Consider the following diagram:

The Data Preparator sample looks as follows:
package org.template.recommendation;
import org.apache.predictionio.controller.java.PJavaPreparator;
import org.apache.spark.SparkContext;
public class Preparator extends PJavaPreparator<TrainingData,
PreparedData> {
@Override
public PreparedData prepare(SparkContext sc,
TrainingData trainingData) {
return new PreparedData(trainingData);
}
}
The PreparedData class returns TrainingData.
The sample Java class for DataSource consists of the method named readTraining(), which can read the event's and create Training Data based on those events.
The sample Java code looks as follows:
public class DataSource extends PJavaDataSource<TrainingData,
EmptyParams, Query, Set<String>> {
private final DataSourceParams dsp;
public DataSource(DataSourceParams dsp) {
this.dsp = dsp;
}
@Override
public TrainingData readTraining(SparkContext sc) {
JavaRDD<UserItemEvent> viewEventsRDD = PJavaEventStore.find(
dsp.getAppName(),
OptionHelper.<String>none(),
OptionHelper.<DateTime>none(),
OptionHelper.<DateTime>none(),
OptionHelper.some("user"),
OptionHelper.<String>none(),
OptionHelper.some(Collections.singletonList("view")),
OptionHelper.<Option<String>>none(),
OptionHelper.<Option<String>>none(),
sc)
.map(new Function<Event, UserItemEvent>() {
@Override
public UserItemEvent call(Event event) throws Exception {
return new UserItemEvent(event.entityId(),
event.targetEntityId().get(),
event.eventTime().getMillis(), UserItemEventType.VIEW);
}
});
}
--
return new TrainingData(usersRDD, itemsRDD, viewEventsRDD,
buyEventsRDD);
}
The key things to note from the preceding code are as follows:
- data is loaded from the event store using the engine object, PJavaEventStore
- Refer to the PredictionIO Scala documents for more information around the PJavaEventStore methods at (http://predictionio.incubator.apache.org/api/current/#org.apache.predictionio.data.store.java.PJavaEventStore$)
- Refer to the Spark Documentation to deep dive into the Function method (https://spark.apache.org/docs/latest/api/java/index.html?org/apache/spark/api/java/function/package-summary.html)
Scala version of the preceding code is shown next.
The Preparator class sample is as follows:
package MyRecommedationScala
import org.apache.predictionio.controller.PPreparator
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.rdd.RDD
class Preparator extends PPreparator[TrainingData, PreparedData] {
def prepare(sc: SparkContext, trainingData: TrainingData):
PreparedData = {
new PreparedData(
users = trainingData.users,
items = trainingData.items,
viewEvents = trainingData.viewEvents,
buyEvents = trainingData.buyEvents)
}
}
class PreparedData(
val users: RDD[(String, User)],
val items: RDD[(String, Item)],
val viewEvents: RDD[ViewEvent],
val buyEvents: RDD[BuyEvent]
) extends Serializable
The DataSource class reads the events and creates TrainingData based on the following events:
class DataSource(val dsp: DataSourceParams)
extends PDataSource[TrainingData,
EmptyEvaluationInfo, Query, EmptyActualResult] {
@transient lazy val logger = Logger[this.type]
override
def readTraining(sc: SparkContext): TrainingData = {
val eventsRDD: RDD[Event] = PEventStore.find(
appName = dsp.appName,
entityType = Some("user"),
eventNames = Some(List("view", "buy")),
// targetEntityType is optional field of an event.
targetEntityType = Some(Some("item")))(sc).cache()
val viewEventsRDD: RDD[ViewEvent] = eventsRDD
.filter { event => event.event == "view" }
.map { ... }
...
new TrainingData(...)
}
}
- Learning Spring 5.0
- MySQL數據庫應用與管理 第2版
- MySQL 8從入門到精通(視頻教學版)
- Visual Basic程序設計教程
- HBase從入門到實戰
- C語言程序設計案例式教程
- 深度強化學習算法與實踐:基于PyTorch的實現
- C#程序設計
- Getting Started with Greenplum for Big Data Analytics
- Android程序設計基礎
- Mastering Linux Security and Hardening
- OpenCV 3 Blueprints
- Mastering Adobe Captivate 7
- Swift High Performance
- Android智能手機APP界面設計實戰教程