官术网_书友最值得收藏!

Regularization parameters in linear regression and ridge/lasso regression

Adjusted R-squared in linear regression always penalizes, adding extra variables with less significance is one type of regularizing the data in linear regression, but it will adjust to the unique fit of the model. Whereas, in machine learning, many parameters are adjusted to regularize the overfitting problem. In the example of lasso/ridge regression penalty parameter (λ) adjusted to regularization, there are infinite values that can be applied to regularize the model in infinite ways:

Overall, there are many similarities between the statistical way and machine learning way of predicting the pattern.

主站蜘蛛池模板: 齐河县| 通山县| 定兴县| 安义县| 迁西县| 前郭尔| 三门峡市| 江油市| 独山县| 宁远县| 屏边| 景洪市| 大余县| 新丰县| 扎鲁特旗| 含山县| 武汉市| 汽车| 报价| 开鲁县| 崇仁县| 昂仁县| 洪雅县| 林周县| 陇南市| 宿松县| 黔东| 芦山县| 准格尔旗| 鄂温| 惠东县| 富源县| 佛坪县| 旬邑县| 四平市| 益阳市| 理塘县| 图木舒克市| 平安县| 灵山县| 泗阳县|