官术网_书友最值得收藏!

Regularization parameters in linear regression and ridge/lasso regression

Adjusted R-squared in linear regression always penalizes, adding extra variables with less significance is one type of regularizing the data in linear regression, but it will adjust to the unique fit of the model. Whereas, in machine learning, many parameters are adjusted to regularize the overfitting problem. In the example of lasso/ridge regression penalty parameter (λ) adjusted to regularization, there are infinite values that can be applied to regularize the model in infinite ways:

Overall, there are many similarities between the statistical way and machine learning way of predicting the pattern.

主站蜘蛛池模板: 延津县| 白玉县| 三亚市| 南充市| 德惠市| 卓尼县| 枣强县| 芷江| 宜兰市| 阿鲁科尔沁旗| 广水市| 清远市| 瑞金市| 汤原县| 中阳县| 广河县| 呈贡县| 大英县| 新泰市| 临泉县| 娱乐| 娄底市| 东乡县| 平谷区| 剑阁县| 马鞍山市| 武强县| 新宁县| 奉节县| 突泉县| 兴文县| 朔州市| 阳西县| 精河县| 大石桥市| 九龙坡区| 土默特右旗| 苍梧县| 灵石县| 武义县| 大渡口区|