- Statistics for Machine Learning
- Pratap Dangeti
- 101字
- 2021-07-02 19:06:00
Regularization parameters in linear regression and ridge/lasso regression
Adjusted R-squared in linear regression always penalizes, adding extra variables with less significance is one type of regularizing the data in linear regression, but it will adjust to the unique fit of the model. Whereas, in machine learning, many parameters are adjusted to regularize the overfitting problem. In the example of lasso/ridge regression penalty parameter (λ) adjusted to regularization, there are infinite values that can be applied to regularize the model in infinite ways:


Overall, there are many similarities between the statistical way and machine learning way of predicting the pattern.
推薦閱讀
- C++案例趣學
- .NET之美:.NET關鍵技術深入解析
- Ceph Cookbook
- DevOps入門與實踐
- PostgreSQL Replication(Second Edition)
- 快速念咒:MySQL入門指南與進階實戰
- 領域驅動設計:軟件核心復雜性應對之道(修訂版)
- Learning Concurrent Programming in Scala
- C/C++程序員面試指南
- 微信小程序開發與實戰(微課版)
- Mastering Linux Security and Hardening
- Spring技術內幕:深入解析Spring架構與設計原理(第2版)
- Zabbix Performance Tuning
- Drupal 8 Development Cookbook(Second Edition)
- C語言從入門到精通(視頻實戰版)