- Deep Learning with Theano
- Christopher Bourez
- 189字
- 2021-07-15 17:17:00
Single-layer linear model
The simplest model is the linear model, where for each class c
, the output is a linear combination of the input values:

This output is unbounded.
To get a probability distribution, pi
, that sums to 1, the output of the linear model is passed into a softmax function:

Hence, the estimated probability of class c
for an input x
is rewritten with vectors:

batch_size = 600 n_in = 28 * 28 n_out = 10 x = T.matrix('x') y = T.ivector('y') W = theano.shared( value=numpy.zeros( (n_in, n_out), dtype=theano.config.floatX ), name='W', borrow=True ) b = theano.shared( value=numpy.zeros( (n_out,), dtype=theano.config.floatX ), name='b', borrow=True ) model = T.nnet.softmax(T.dot(x, W) + b)
The prediction for a given input is given by the most probable class (maximum probability):
y_pred = T.argmax(model, axis=1)
In this model with a single linear layer, information moves from input to output: it is a feedforward network. The process to compute the output given the input is called forward propagation.
This layer is said fully connected because all outputs,

, are the sum of (are linked to) all inputs values through a multiplicative coefficient:

- 深入理解Android(卷I)
- PHP基礎案例教程
- JavaScript+Vue+React全程實例
- Reactive Programming With Java 9
- INSTANT OpenNMS Starter
- Learning Zurb Foundation
- Apache Mahout Clustering Designs
- Windows內核編程
- C語言程序設計
- 第一行代碼 C語言(視頻講解版)
- 創意UI:Photoshop玩轉APP設計
- 計算機應用基礎項目化教程
- Java EE 7 with GlassFish 4 Application Server
- SAP Web Dynpro for ABAP開發技術詳解:基礎應用
- Serverless工程實踐:從入門到進階