官术网_书友最值得收藏!

Singular value decomposition

When we decompose an integer into its prime factors, we can understand useful properties about the integer. Similarly, when we decompose a matrix, we can understand many functional properties that are not directly evident. There are two types of decomposition, namely eigenvalue decomposition and singular value decomposition.

All real matrices have singular value decomposition, but the same is not true for Eigenvalue decomposition. For example, if a matrix is not square, the Eigen decomposition is not defined and we must use singular value decomposition instead.

Singular Value Decomposition (SVD) in mathematical form is the product of three matrices U, S, and V, where U is m*r, S is r*r and V is r*n:

The following example shows SVD using a TensorFlow svd operation on textual data:

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plts

path = "/neuralnetwork-programming/ch01/plots"

text = ["I", "like", "enjoy",
"deep", "learning", "NLP", "flying", "."]
xMatrix = np.array([[0,2,1,0,0,0,0,0],
[2,0,0,1,0,1,0,0],
[1,0,0,0,0,0,1,0],
[0,1,0,0,1,0,0,0],
[0,0,0,1,0,0,0,1],
[0,1,0,0,0,0,0,1],
[0,0,1,0,0,0,0,1],
[0,0,0,0,1,1,1,0]], dtype=np.float32)

X_tensor = tf.convert_to_tensor(xMatrix, dtype=tf.float32)

# tensorflow svd
with tf.Session() as sess:
s, U, Vh = sess.run(tf.svd(X_tensor, full_matrices=False))

for i in range(len(text)):
plts.text(U[i,0], U[i,1], text[i])

plts.ylim(-0.8,0.8)
plts.xlim(-0.8,2.0)
plts.savefig(path + '/svd_tf.png')

# numpy svd
la = np.linalg
U, s, Vh = la.svd(xMatrix, full_matrices=False)

print(U)
print(s)
print(Vh)

# write matrices to file (understand concepts)
file = open(path + "/matx.txt", 'w')
file.write(str(U))
file.write("\n")
file.write("=============")
file.write("\n")
file.write(str(s))
file.close()

for i in range(len(text)):
plts.text(U[i,0], U[i,1], text[i])

plts.ylim(-0.8,0.8)
plts.xlim(-0.8,2.0)
plts.savefig(path + '/svd_np.png')

The output of this is shown as follows:

[[ -5.24124920e-01  -5.72859168e-01   9.54463035e-02   3.83228481e-01   -1.76963374e-01  -1.76092178e-01  -4.19185609e-01  -5.57702743e-02]
[ -5.94438076e-01 6.30120635e-01 -1.70207784e-01 3.10038358e-0
1.84062332e-01 -2.34777853e-01 1.29535481e-01 1.36813134e-01]
[ -2.56274015e-01 2.74017543e-01 1.59810841e-01 3.73903001e-16
-5.78984618e-01 6.36550903e-01 -3.32297325e-16 -3.05414885e-01]
[ -2.85637408e-01 -2.47912124e-01 3.54610324e-01 -7.31901303e-02
4.45784479e-01 8.36141407e-02 5.48721075e-01 -4.68012422e-01]
[ -1.93139315e-01 3.38495038e-02 -5.00790417e-01 -4.28462476e-01
3.47110212e-01 1.55483231e-01 -4.68663752e-01 -4.03576553e-01]
[ -3.05134684e-01 -2.93989003e-01 -2.23433599e-01 -1.91614240e-01
1.27460942e-01 4.91219401e-01 2.09592804e-01 6.57535374e-01]
[ -1.82489842e-01 -1.61027774e-01 -3.97842437e-01 -3.83228481e-01
-5.12923241e-01 -4.27574426e-01 4.19185609e-01 -1.18313827e-01]
[ -2.46898428e-01 1.57254755e-01 5.92991650e-01 -6.20076716e-01
-3.21868137e-02 -2.31065080e-01 -2.59070963e-01 2.37976909e-01]]
[ 2.75726271 2.67824793 1.89221275 1.61803401 1.19154561 0.94833982
0.61803401 0.56999218]
[[ -5.24124920e-01 -5.94438076e-01 -2.56274015e-01 -2.85637408e-01
-1.93139315e-01 -3.05134684e-01 -1.82489842e-01 -2.46898428e-01]
[ 5.72859168e-01 -6.30120635e-01 -2.74017543e-01 2.47912124e-01
-3.38495038e-02 2.93989003e-01 1.61027774e-01 -1.57254755e-01]
[ -9.54463035e-02 1.70207784e-01 -1.59810841e-01 -3.54610324e-01
5.00790417e-01 2.23433599e-01 3.97842437e-01 -5.92991650e-01]
[ 3.83228481e-01 3.10038358e-01 -2.22044605e-16 -7.31901303e-02
-4.28462476e-01 -1.91614240e-01 -3.83228481e-01 -6.20076716e-01]
[ -1.76963374e-01 1.84062332e-01 -5.78984618e-01 4.45784479e-01
3.47110212e-01 1.27460942e-01 -5.12923241e-01 -3.21868137e-02]
[ 1.76092178e-01 2.34777853e-01 -6.36550903e-01 -8.36141407e-02
-1.55483231e-01 -4.91219401e-01 4.27574426e-01 2.31065080e-01]
[ 4.19185609e-01 -1.29535481e-01 -3.33066907e-16 -5.48721075e-01
4.68663752e-01 -2.09592804e-01 -4.19185609e-01 2.59070963e-01]
[ -5.57702743e-02 1.36813134e-01 -3.05414885e-01 -4.68012422e-01
-4.03576553e-01 6.57535374e-01 -1.18313827e-01 2.37976909e-01]]

Here is the plot for the SVD of the preceding dataset:

主站蜘蛛池模板: 濮阳市| 贵定县| 新营市| 宜黄县| 河池市| 抚顺县| 会昌县| 宝丰县| 监利县| 清丰县| 成武县| 本溪市| 格尔木市| 黎平县| 岳普湖县| 刚察县| 称多县| 广宁县| 新乡市| 大冶市| 将乐县| 杭锦旗| 吴忠市| 安远县| 长泰县| 越西县| 江川县| 绥芬河市| 乌鲁木齐县| 澄江县| 龙井市| 香格里拉县| 上饶市| 资阳市| 科技| 名山县| 扎兰屯市| 福泉市| 晋州市| 五大连池市| 汝南县|