書名: Statistics for Data Science作者名: James D. Miller本章字數(shù): 74字更新時間: 2021-07-02 14:58:56
A Developer's Approach to Data Cleaning
This chapter discusses how a developer might understand and approach the topic of data cleaning using several common statistical methods.
In this chapter, we've broken things into the following topics:
- Understanding basic data cleaning
- Using R to detect and diagnose common data issues, such as missing values, special values, outliers, inconsistencies, and localization
- Using R to address advanced statistical situations, such as transformation, deductive correction, and deterministic imputation
推薦閱讀
- 工業(yè)機器人產(chǎn)品應(yīng)用實戰(zhàn)
- 大數(shù)據(jù)專業(yè)英語
- 系統(tǒng)安裝與重裝
- 人工智能趣味入門:光環(huán)板程序設(shè)計
- Troubleshooting OpenVPN
- 網(wǎng)站前臺設(shè)計綜合實訓
- MCGS嵌入版組態(tài)軟件應(yīng)用教程
- 從零開始學JavaScript
- Hands-On Business Intelligence with Qlik Sense
- ADuC系列ARM器件應(yīng)用技術(shù)
- 計算機硬件技術(shù)基礎(chǔ)(第2版)
- Moodle 2.0 Course Conversion(Second Edition)
- Red Hat Enterprise Linux 5.0服務(wù)器構(gòu)建與故障排除
- 數(shù)字多媒體技術(shù)與應(yīng)用實例
- R Statistics Cookbook