官术网_书友最值得收藏!

Multiple graphs

You can create your own graphs separate from the default graph and execute them in a session. However, creating and executing multiple graphs is not recommended, as it has the following disadvantages:

  • Creating and using multiple graphs in the same program would require multiple TensorFlow sessions and each session would consume heavy resources
  • You cannot directly pass data in between graphs

Hence, the recommended approach is to have multiple subgraphs in a single graph. In case you wish to use your own graph instead of the default graph, you can do so with the tf.graph() command. Here is an example where we create our own graph, g, and execute it as the default graph:

g = tf.Graph()
output = 0

# Assume Linear Model y = w * x + b

with g.as_default():
# Define model parameters
w = tf.Variable([.3], tf.float32)
b = tf.Variable([-.3], tf.float32)
# Define model input and output
x = tf.placeholder(tf.float32)
y = w * x + b

with tf.Session(graph=g) as tfs:
# initialize and print the variable y
tf.global_variables_initializer().run()
output = tfs.run(y,{x:[1,2,3,4]})

print('output : ',output)
主站蜘蛛池模板: 双鸭山市| 屏东县| 绥阳县| 容城县| 镇江市| 凤凰县| 大竹县| 芜湖县| 华坪县| 天祝| 韶山市| 镇宁| 定南县| 浑源县| 手游| 北安市| 南城县| 汝阳县| 南安市| 平塘县| 千阳县| 昂仁县| 陵水| 特克斯县| 浏阳市| 丰都县| 嘉禾县| 隆回县| 林口县| 和田市| 山东省| 宝坻区| 鹤庆县| 平邑县| 安乡县| 武安市| 桃江县| 潼关县| 扎鲁特旗| 延安市| 景德镇市|