- Mastering TensorFlow 1.x
- Armando Fandango
- 184字
- 2021-06-25 22:50:58
Multiple graphs
You can create your own graphs separate from the default graph and execute them in a session. However, creating and executing multiple graphs is not recommended, as it has the following disadvantages:
- Creating and using multiple graphs in the same program would require multiple TensorFlow sessions and each session would consume heavy resources
- You cannot directly pass data in between graphs
Hence, the recommended approach is to have multiple subgraphs in a single graph. In case you wish to use your own graph instead of the default graph, you can do so with the tf.graph() command. Here is an example where we create our own graph, g, and execute it as the default graph:
g = tf.Graph()
output = 0
# Assume Linear Model y = w * x + b
with g.as_default():
# Define model parameters
w = tf.Variable([.3], tf.float32)
b = tf.Variable([-.3], tf.float32)
# Define model input and output
x = tf.placeholder(tf.float32)
y = w * x + b
with tf.Session(graph=g) as tfs:
# initialize and print the variable y
tf.global_variables_initializer().run()
output = tfs.run(y,{x:[1,2,3,4]})
print('output : ',output)
推薦閱讀
- Windows phone 7.5 application development with F#
- 圖解西門子S7-200系列PLC入門
- 基于Proteus和Keil的C51程序設計項目教程(第2版):理論、仿真、實踐相融合
- 電腦常見故障現場處理
- 3ds Max Speed Modeling for 3D Artists
- 嵌入式系統設計教程
- 數字邏輯(第3版)
- 嵌入式系統中的模擬電路設計
- Machine Learning with Go Quick Start Guide
- VMware Workstation:No Experience Necessary
- 龍芯自主可信計算及應用
- 單片機開發與典型工程項目實例詳解
- 數字媒體專業英語(第2版)
- Mastering Quantum Computing with IBM QX
- The Deep Learning with PyTorch Workshop