官术网_书友最值得收藏!

Multiple graphs

You can create your own graphs separate from the default graph and execute them in a session. However, creating and executing multiple graphs is not recommended, as it has the following disadvantages:

  • Creating and using multiple graphs in the same program would require multiple TensorFlow sessions and each session would consume heavy resources
  • You cannot directly pass data in between graphs

Hence, the recommended approach is to have multiple subgraphs in a single graph. In case you wish to use your own graph instead of the default graph, you can do so with the tf.graph() command. Here is an example where we create our own graph, g, and execute it as the default graph:

g = tf.Graph()
output = 0

# Assume Linear Model y = w * x + b

with g.as_default():
# Define model parameters
w = tf.Variable([.3], tf.float32)
b = tf.Variable([-.3], tf.float32)
# Define model input and output
x = tf.placeholder(tf.float32)
y = w * x + b

with tf.Session(graph=g) as tfs:
# initialize and print the variable y
tf.global_variables_initializer().run()
output = tfs.run(y,{x:[1,2,3,4]})

print('output : ',output)
主站蜘蛛池模板: 汉源县| 五常市| 六盘水市| 安新县| 武宁县| 德江县| 台山市| 卓资县| 平塘县| 姜堰市| 察哈| 嘉祥县| 土默特左旗| 教育| 璧山县| 泾源县| 临武县| 定州市| 冀州市| 临朐县| 体育| 建宁县| 合川市| 溆浦县| 织金县| 尖扎县| 额济纳旗| 随州市| 宁蒗| 株洲县| 庄浪县| 延寿县| 新绛县| 蚌埠市| 汝阳县| 宜城市| 临沧市| 山丹县| 册亨县| 金塔县| 都兰县|