- Deep Learning Essentials
- Wei Di Anurag Bhardwaj Jianing Wei
- 93字
- 2021-06-30 19:17:52
Hidden layers
Hidden layers are layers between the input and output layers. Neurons on hidden layers can take various forms, such as a max pooling layer, convolutional layer, and so on, all be performing different mathematical functionalities. If you think of the entire network as a pipe of mathematical transformations, the hidden layers are each transformed and then composed together to map your input data to the output space. We will introduce more variations of the hidden layer when we talk about convolutional neural networks and RNN in later sections of this chapter.
推薦閱讀
- 大數據技術與應用基礎
- Big Data Analytics with Hadoop 3
- 面向STEM的mBlock智能機器人創新課程
- Machine Learning for Cybersecurity Cookbook
- Linux Mint System Administrator’s Beginner's Guide
- 流處理器研究與設計
- 快學Flash動畫百例
- 模型制作
- PHP開發手冊
- 西門子S7-200 SMART PLC實例指導學與用
- 基于ARM 32位高速嵌入式微控制器
- Extending Ansible
- Unity Multiplayer Games
- Apache源代碼全景分析(第1卷):體系結構與核心模塊
- 基于RPA技術財務機器人的應用與研究