- Deep Learning Essentials
- Wei Di Anurag Bhardwaj Jianing Wei
- 93字
- 2021-06-30 19:17:52
Hidden layers
Hidden layers are layers between the input and output layers. Neurons on hidden layers can take various forms, such as a max pooling layer, convolutional layer, and so on, all be performing different mathematical functionalities. If you think of the entire network as a pipe of mathematical transformations, the hidden layers are each transformed and then composed together to map your input data to the output space. We will introduce more variations of the hidden layer when we talk about convolutional neural networks and RNN in later sections of this chapter.
推薦閱讀
- 構(gòu)建高質(zhì)量的C#代碼
- 輕松學(xué)Java Web開發(fā)
- Hands-On Machine Learning on Google Cloud Platform
- 計算機應(yīng)用復(fù)習(xí)與練習(xí)
- Mastering Machine Learning Algorithms
- LAMP網(wǎng)站開發(fā)黃金組合Linux+Apache+MySQL+PHP
- 精通數(shù)據(jù)科學(xué):從線性回歸到深度學(xué)習(xí)
- Mastering GitLab 12
- 工業(yè)機器人實操進階手冊
- Cortex-M3嵌入式處理器原理與應(yīng)用
- SQL Server 2019 Administrator's Guide
- 玩轉(zhuǎn)機器人:基于Proteus的電路原理仿真(移動視頻版)
- R:Predictive Analysis
- 白話機器學(xué)習(xí)算法
- 信息技術(shù)基礎(chǔ)應(yīng)用