- Deep Learning Essentials
- Wei Di Anurag Bhardwaj Jianing Wei
- 87字
- 2021-06-30 19:17:51
The output layer
The output layer is basically the output value of the network and is formed depending on the problem setting. In unsupervised learning, such as encoding or decoding, the output can be the same as the input. For classification problems, the output layer can have n neurons for n-way classification and utilize a softmax function to output the probability of being each class. Overall, the output layer maps to your target space and the perceptron in it would change accordingly, based on your problem setting.
推薦閱讀
- 嵌入式系統(tǒng)及其開發(fā)應(yīng)用
- 面向STEM的mBlock智能機(jī)器人創(chuàng)新課程
- Getting Started with Oracle SOA B2B Integration:A Hands-On Tutorial
- AI 3.0
- 網(wǎng)絡(luò)化分布式系統(tǒng)預(yù)測(cè)控制
- 西門子變頻器技術(shù)入門及實(shí)踐
- Mastering Game Development with Unreal Engine 4(Second Edition)
- R Data Analysis Projects
- Hands-On Data Warehousing with Azure Data Factory
- 從零開始學(xué)JavaScript
- 機(jī)器人制作入門(第4版)
- 算法設(shè)計(jì)與分析
- 從祖先到算法:加速進(jìn)化的人類文化
- Mastering Android Game Development with Unity
- 牛津通識(shí)讀本:大數(shù)據(jù)(中文版)