官术网_书友最值得收藏!

Sigmoid

The sigmoid activation function has a simple mathematical form, as follows:

The sigmoid function intuitively takes a real-valued number and outputs a number in a range between zero and one. For a large negative number, it returns close to zero and, for a large positive number, it returns close to one. The following plot represents different sigmoid function outputs:

The sigmoid function has been historically used across different architectures, but in recent times it has gone out of popularity as it has one major drawback. When the output of the sigmoid function is close to zero or one, the gradients for the layers before the sigmoid function are close to zero and, hence, the learnable parameters of the previous layer get gradients close to zero and the weights do not get adjusted often, resulting in dead neurons.

主站蜘蛛池模板: 贞丰县| 富民县| 乐亭县| 格尔木市| 东平县| 昌吉市| 东山县| 永城市| 靖宇县| 呼和浩特市| 潜山县| 鹤岗市| 饶河县| 遂溪县| 鸡泽县| 龙南县| 阿荣旗| 商丘市| 广丰县| 江陵县| 蒲江县| 彰化县| 宁夏| 汶川县| 本溪| 白银市| 平和县| 垣曲县| 石门县| 宿松县| 博爱县| 盐津县| 高州市| 尼玛县| 威宁| 英德市| 盐城市| 安平县| 望江县| 晋宁县| 浦城县|