官术网_书友最值得收藏!

Loading data 

Preparing data for deep learning algorithms could be a complex pipeline by itself. PyTorch provides many utility classes that abstract a lot of complexity such as data-parallelization through multi-threading, data-augmenting, and batching. In this chapter, we will take a look at two of the important utility classes, namely the Dataset class and the DataLoader class. To understand how to use these classes, let's take the Dogs vs. Cats dataset from Kaggle (https://www.kaggle.com/c/dogs-vs-cats/data) and create a data pipeline that generates a batch of images in the form of PyTorch tensors. 

主站蜘蛛池模板: 永嘉县| 白山市| 深水埗区| 富宁县| 通城县| 银川市| 通辽市| 永丰县| 甘孜县| 尉犁县| 大丰市| 偃师市| 宣城市| 炉霍县| 沙湾县| 香河县| 泰州市| 平江县| 两当县| 太保市| 林口县| 武义县| 马鞍山市| 呼和浩特市| 株洲市| 屯昌县| 蕲春县| 徐汇区| 泰安市| 九江市| 东乌珠穆沁旗| 彰武县| 铜川市| 八宿县| 南城县| 西乌| 梅州市| 榆社县| 江达县| 仁寿县| 桦南县|