官术网_书友最值得收藏!

Loading data 

Preparing data for deep learning algorithms could be a complex pipeline by itself. PyTorch provides many utility classes that abstract a lot of complexity such as data-parallelization through multi-threading, data-augmenting, and batching. In this chapter, we will take a look at two of the important utility classes, namely the Dataset class and the DataLoader class. To understand how to use these classes, let's take the Dogs vs. Cats dataset from Kaggle (https://www.kaggle.com/c/dogs-vs-cats/data) and create a data pipeline that generates a batch of images in the form of PyTorch tensors. 

主站蜘蛛池模板: 新宾| 那曲县| 阳高县| 冀州市| 全椒县| 宁安市| 水城县| 科技| 个旧市| 桦川县| 桦甸市| 忻州市| 乌鲁木齐县| 綦江县| 达拉特旗| 吉木萨尔县| 楚雄市| 乌鲁木齐市| 蓝田县| 古丈县| 渭南市| 喀喇沁旗| 麻栗坡县| 宁陵县| 靖远县| 上虞市| 大同县| 双流县| 江孜县| 阿勒泰市| 定州市| 扶风县| 灵武市| 罗平县| 贵阳市| 柘荣县| 渑池县| 安新县| 湖口县| 镇坪县| 张家口市|