官术网_书友最值得收藏!

4-D tensors

One common example for four-dimensional tensor types is a batch of images. Modern CPUs and GPUs are optimized to perform the same operations on multiple examples faster. So, they take a similar time to process one image or a batch of images. So, it is common to use a batch of examples rather than use a single image at a time. Choosing the batch size is not straightforward; it depends on several factors. One major restriction for using a bigger batch or the complete dataset is GPU memory limitations—16, 32, and 64 are commonly used batch sizes.

Let's look at an example where we load a batch of cat images of size 64 x 224 x 224 x 3 where 64 represents the batch size or the number of images, 244 represents height and width, and 3 represents channels:

#Read cat images from disk
cats = glob(data_path+'*.jpg')
#Convert images into numpy arrays
cat_imgs = np.array([np.array(Image.open(cat).resize((224,224))) for cat in cats[:64]])
cat_imgs = cat_imgs.reshape(-1,224,224,3)
cat_tensors = torch.from_numpy(cat_imgs)
cat_tensors.size()

Output - torch.Size([64, 224, 224, 3])
主站蜘蛛池模板: 乌拉特后旗| 杭锦旗| 南漳县| 武威市| 阿坝县| 东海县| 聂拉木县| 凉城县| 黑河市| 武定县| 万州区| 延川县| 白河县| 普定县| 通城县| 阳西县| 育儿| 东乡| 大姚县| 德阳市| 邵武市| 新昌县| 鸡西市| 诏安县| 白银市| 弥渡县| 乐陵市| 卢龙县| 吉木萨尔县| 手机| 璧山县| 巩留县| 大庆市| 九龙县| 新乐市| 宁化县| 阳朔县| 馆陶县| 长宁区| 永德县| 格尔木市|