- Deep Learning with PyTorch
- Vishnu Subramanian
- 179字
- 2021-06-24 19:16:24
4-D tensors
One common example for four-dimensional tensor types is a batch of images. Modern CPUs and GPUs are optimized to perform the same operations on multiple examples faster. So, they take a similar time to process one image or a batch of images. So, it is common to use a batch of examples rather than use a single image at a time. Choosing the batch size is not straightforward; it depends on several factors. One major restriction for using a bigger batch or the complete dataset is GPU memory limitations—16, 32, and 64 are commonly used batch sizes.
Let's look at an example where we load a batch of cat images of size 64 x 224 x 224 x 3 where 64 represents the batch size or the number of images, 244 represents height and width, and 3 represents channels:
#Read cat images from disk
cats = glob(data_path+'*.jpg')
#Convert images into numpy arrays
cat_imgs = np.array([np.array(Image.open(cat).resize((224,224))) for cat in cats[:64]])
cat_imgs = cat_imgs.reshape(-1,224,224,3)
cat_tensors = torch.from_numpy(cat_imgs)
cat_tensors.size()
Output - torch.Size([64, 224, 224, 3])
- 用“芯”探核:龍芯派開發實戰
- 辦公通信設備維修
- 計算機組裝·維護與故障排除
- 精選單片機設計與制作30例(第2版)
- 電腦維護365問
- Learning Game Physics with Bullet Physics and OpenGL
- 分布式系統與一致性
- Intel Edison智能硬件開發指南:基于Yocto Project
- Java Deep Learning Cookbook
- 電腦組裝與維護即時通
- WebGL Hotshot
- Hands-On Deep Learning for Images with TensorFlow
- 微服務實戰
- Raspberry Pi Home Automation with Arduino
- 微服務架構實戰:基于Spring Boot、Spring Cloud、Docker