官术网_书友最值得收藏!

Matrix (2-D tensors)

Most of the structured data is represented in the form of tables or matrices. We will use a dataset called Boston House Prices, which is readily available in the Python scikit-learn machine learning library. The dataset is a numpy array consisting of 506 samples or rows and 13 features representing each sample. Torch provides a utility function called from_numpy(), which converts a numpy array into a torch tensor. The shape of the resulting tensor is 506 rows x 13 columns:

boston_tensor = torch.from_numpy(boston.data)
boston_tensor.size()

Output: torch.Size([506, 13])

boston_tensor[:2]

Output:
Columns 0 to 7
0.0063 18.0000 2.3100 0.0000 0.5380 6.5750 65.2000 4.0900
0.0273 0.0000 7.0700 0.0000 0.4690 6.4210 78.9000 4.9671

Columns 8 to 12
1.0000 296.0000 15.3000 396.9000 4.9800
2.0000 242.0000 17.8000 396.9000 9.1400
[torch.DoubleTensor of size 2x13]
主站蜘蛛池模板: 临海市| 云和县| 潜江市| 长春市| 五寨县| 徐汇区| 南昌市| 栾川县| 灌阳县| 安福县| 来安县| 辽宁省| 西青区| 昌平区| 汪清县| 肥西县| 宁武县| 平安县| 驻马店市| 花莲市| 嘉黎县| 临泉县| 黎平县| 祁阳县| 互助| 定日县| 富源县| 九寨沟县| 衡南县| 东乌珠穆沁旗| 米林县| 芜湖县| 益阳市| 陇西县| 措勤县| 长沙县| 呼图壁县| 安平县| 固镇县| 无为县| 霍林郭勒市|