官术网_书友最值得收藏!

Training the random forest

Training the random forest model is not very different from training the decision tree:

In []: 
from sklearn.ensemble import RandomForestClassifier 
rf_model = RandomForestClassifier(criterion = 'entropy', random_state=42) 
rf_model = rf_model.fit(X_train, y_train) 
print(rf_model) 
Out[]: 
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy', 
            max_depth=None, max_features='auto', max_leaf_nodes=None, 
            min_impurity_split=1e-07, min_samples_leaf=1, 
            min_samples_split=2, min_weight_fraction_leaf=0.0, 
            n_estimators=10, n_jobs=1, oob_score=False, random_state=42, 
            verbose=0, warm_start=False) 
主站蜘蛛池模板: 新竹县| 惠水县| 花莲市| 曲周县| 旺苍县| 门源| 余江县| 广安市| 巴中市| 恩平市| 遂宁市| 凌云县| 淮阳县| 青州市| 伊川县| 宣城市| 加查县| 凌云县| 闵行区| 固原市| 岑巩县| 宁晋县| 清镇市| 龙岩市| 宣武区| 溧阳市| 简阳市| 开化县| 额尔古纳市| 姜堰市| 攀枝花市| 甘孜县| 玉田县| 三台县| 阜宁县| 临桂县| 玉树县| 南召县| 高淳县| 郑州市| 元朗区|