- Machine Learning with Swift
- Alexander Sosnovshchenko
- 55字
- 2021-06-24 18:55:00
Training the random forest
Training the random forest model is not very different from training the decision tree:
In []: from sklearn.ensemble import RandomForestClassifier rf_model = RandomForestClassifier(criterion = 'entropy', random_state=42) rf_model = rf_model.fit(X_train, y_train) print(rf_model) Out[]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_split=1e-07, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1, oob_score=False, random_state=42, verbose=0, warm_start=False)
推薦閱讀
- 網絡服務器配置與管理(第3版)
- SDL Game Development
- Linux運維之道(第2版)
- 電腦常見故障現場處理
- INSTANT ForgedUI Starter
- Learning Stencyl 3.x Game Development Beginner's Guide
- Building 3D Models with modo 701
- Istio服務網格技術解析與實踐
- RISC-V處理器與片上系統設計:基于FPGA與云平臺的實驗教程
- Mastering Machine Learning on AWS
- 微控制器的應用
- Drupal Rules How-to
- 計算機組裝與維護(慕課版)
- 嵌入式系統設計大學教程(第2版)
- 筆記本電腦現場維修實錄