官术网_书友最值得收藏!

Training the random forest

Training the random forest model is not very different from training the decision tree:

In []: 
from sklearn.ensemble import RandomForestClassifier 
rf_model = RandomForestClassifier(criterion = 'entropy', random_state=42) 
rf_model = rf_model.fit(X_train, y_train) 
print(rf_model) 
Out[]: 
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy', 
            max_depth=None, max_features='auto', max_leaf_nodes=None, 
            min_impurity_split=1e-07, min_samples_leaf=1, 
            min_samples_split=2, min_weight_fraction_leaf=0.0, 
            n_estimators=10, n_jobs=1, oob_score=False, random_state=42, 
            verbose=0, warm_start=False) 
主站蜘蛛池模板: 南部县| 尉犁县| 咸宁市| 太湖县| 长宁区| 梨树县| 聂拉木县| 陇川县| 兴业县| 沈阳市| 元朗区| 吉首市| 翁牛特旗| 南华县| 土默特右旗| 河东区| 万盛区| 盖州市| 通许县| 临海市| 商南县| 闻喜县| 周宁县| 南丹县| 惠水县| 繁峙县| 如皋市| 沂源县| 泸州市| 合阳县| 洛扎县| 思茅市| 增城市| 海宁市| 治多县| 礼泉县| 南岸区| 静海县| 泽州县| 桓台县| 古丈县|