- Machine Learning with Swift
- Alexander Sosnovshchenko
- 55字
- 2021-06-24 18:55:00
Training the random forest
Training the random forest model is not very different from training the decision tree:
In []: from sklearn.ensemble import RandomForestClassifier rf_model = RandomForestClassifier(criterion = 'entropy', random_state=42) rf_model = rf_model.fit(X_train, y_train) print(rf_model) Out[]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_split=1e-07, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1, oob_score=False, random_state=42, verbose=0, warm_start=False)
推薦閱讀
- Learning AngularJS Animations
- 新型電腦主板關(guān)鍵電路維修圖冊
- 計算機(jī)組裝·維護(hù)與故障排除
- Deep Learning with PyTorch
- 計算機(jī)應(yīng)用與維護(hù)基礎(chǔ)教程
- Mastering Manga Studio 5
- 電腦高級維修及故障排除實戰(zhàn)
- LPC1100系列處理器原理及應(yīng)用
- Neural Network Programming with Java(Second Edition)
- 無蘋果不生活:OS X Mountain Lion 隨身寶典
- 單片微機(jī)原理及應(yīng)用
- 基于網(wǎng)絡(luò)化教學(xué)的項目化單片機(jī)應(yīng)用技術(shù)
- UML精粹:標(biāo)準(zhǔn)對象建模語言簡明指南(第3版)
- Service Mesh微服務(wù)架構(gòu)設(shè)計
- OpenCV 4 Computer Vision Application Programming Cookbook(Fourth Edition)