- Deep Learning By Example
- Ahmed Menshawy
- 220字
- 2021-06-24 18:52:45
Using a regression or another simple model to predict the values of missing variables
This is the approach that we will use for the Age feature of the Titanic example. The Age feature is an important step towards predicting the survival of passengers, and applying the previous approach by taking the mean will make us lose some information.
In order to predict the missing values, you need to use a supervised learning algorithm that takes the available features as input and the available values of the feature that you want to predict for its missing value as output. In the following code snippet, we are using the random forest classifier to predict the missing values of the Age feature:
# Define a helper function that can use RandomForestClassifier for handling the missing values of the age variable
def set_missing_ages():
global df_titanic_data
age_data = df_titanic_data[
['Age', 'Embarked', 'Fare', 'Parch', 'SibSp', 'Title_id', 'Pclass', 'Names', 'CabinLetter']]
input_values_RF = age_data.loc[(df_titanic_data.Age.notnull())].values[:, 1::]
target_values_RF = age_data.loc[(df_titanic_data.Age.notnull())].values[:, 0]
# Creating an object from the random forest regression function of sklearn<use the documentation for more details>
regressor = RandomForestRegressor(n_estimators=2000, n_jobs=-1)
# building the model based on the input values and target values above
regressor.fit(input_values_RF, target_values_RF)
# using the trained model to predict the missing values
predicted_ages = regressor.predict(age_data.loc[(df_titanic_data.Age.isnull())].values[:, 1::])
# Filling the predicted ages in the original titanic dataframe
age_data.loc[(age_data.Age.isnull()), 'Age'] = predicted_ages
推薦閱讀
- Internet接入·網絡安全
- 自動控制工程設計入門
- 工業機器人產品應用實戰
- Cinema 4D R13 Cookbook
- Google App Inventor
- 系統安裝與重裝
- AutoCAD 2012中文版繪圖設計高手速成
- Machine Learning with Apache Spark Quick Start Guide
- Citrix? XenDesktop? 7 Cookbook
- Hands-On DevOps
- 筆記本電腦使用與維護
- 計算機硬件技術基礎(第2版)
- Deep Learning Essentials
- Mastering SQL Server 2014 Data Mining
- Web滲透技術及實戰案例解析