- Deep Learning By Example
- Ahmed Menshawy
- 220字
- 2021-06-24 18:52:45
Using a regression or another simple model to predict the values of missing variables
This is the approach that we will use for the Age feature of the Titanic example. The Age feature is an important step towards predicting the survival of passengers, and applying the previous approach by taking the mean will make us lose some information.
In order to predict the missing values, you need to use a supervised learning algorithm that takes the available features as input and the available values of the feature that you want to predict for its missing value as output. In the following code snippet, we are using the random forest classifier to predict the missing values of the Age feature:
# Define a helper function that can use RandomForestClassifier for handling the missing values of the age variable
def set_missing_ages():
global df_titanic_data
age_data = df_titanic_data[
['Age', 'Embarked', 'Fare', 'Parch', 'SibSp', 'Title_id', 'Pclass', 'Names', 'CabinLetter']]
input_values_RF = age_data.loc[(df_titanic_data.Age.notnull())].values[:, 1::]
target_values_RF = age_data.loc[(df_titanic_data.Age.notnull())].values[:, 0]
# Creating an object from the random forest regression function of sklearn<use the documentation for more details>
regressor = RandomForestRegressor(n_estimators=2000, n_jobs=-1)
# building the model based on the input values and target values above
regressor.fit(input_values_RF, target_values_RF)
# using the trained model to predict the missing values
predicted_ages = regressor.predict(age_data.loc[(df_titanic_data.Age.isnull())].values[:, 1::])
# Filling the predicted ages in the original titanic dataframe
age_data.loc[(age_data.Age.isnull()), 'Age'] = predicted_ages
推薦閱讀
- Google Cloud Platform Cookbook
- Verilog HDL數(shù)字系統(tǒng)設(shè)計(jì)入門與應(yīng)用實(shí)例
- Getting Started with Oracle SOA B2B Integration:A Hands-On Tutorial
- 電腦上網(wǎng)直通車
- Google App Inventor
- 工業(yè)機(jī)器人入門實(shí)用教程(KUKA機(jī)器人)
- Excel 2007技巧大全
- 新編計(jì)算機(jī)圖形學(xué)
- 走近大數(shù)據(jù)
- Learning ServiceNow
- 水晶石影視動(dòng)畫精粹:After Effects & Nuke 影視后期合成
- HBase Essentials
- JRuby語(yǔ)言實(shí)戰(zhàn)技術(shù)
- 傳感器原理與工程應(yīng)用
- 工業(yè)機(jī)器人操作