- Deep Learning By Example
- Ahmed Menshawy
- 139字
- 2021-06-24 18:52:45
Assigning an average value
This is also one of the common approaches because of its simplicity. In the case of a numerical feature, you can just replace the missing values with the mean or median. You can also use this approach in the case of categorical variables by assigning the mode (the value that has the highest occurrence) to the missing values.
The following code assigns the median of the non-missing values of the Fare feature to the missing values:
# handling the missing values by replacing it with the median fare
df_titanic_data['Fare'][np.isnan(df_titanic_data['Fare'])] = df_titanic_data['Fare'].median()
Or, you can use the following code to find the value that has the highest occurrence in the Embarked feature and assign it to the missing values:
# replacing the missing values with the most common value in the variable
df_titanic_data.Embarked[df_titanic_data.Embarked.isnull()] = df_titanic_data.Embarked.dropna().mode().values
推薦閱讀
- PostgreSQL 11 Server Side Programming Quick Start Guide
- Managing Mission:Critical Domains and DNS
- 計算機網絡應用基礎
- AutoCAD 2012中文版繪圖設計高手速成
- 人工智能實踐錄
- 影視后期編輯與合成
- Practical Big Data Analytics
- Mastering Ceph
- 青少年VEX IQ機器人實訓課程(初級)
- AMK伺服控制系統原理及應用
- 手把手教你學Photoshop CS3
- Hands-On Geospatial Analysis with R and QGIS
- Practical Network Automation
- CPLD/FPGA技術應用
- 電氣自動化工程師自學寶典(基礎篇)