- Deep Learning By Example
- Ahmed Menshawy
- 89字
- 2021-06-24 18:52:44
Missing values
This step will be the first thing to think of after getting a new dataset from the customer, because there will be missing/incorrect data in nearly every dataset. In the next chapters, you will see that some learning algorithms are able to deal with missing values and others need you to handle missing data. During this example, we are going to use the random forest classifier from scikit-learn, which requires separate handling of missing data.
There are different approaches that you can use to handle missing data.
推薦閱讀
- Dreamweaver CS3+Flash CS3+Fireworks CS3創意網站構建實例詳解
- 大學計算機基礎:基礎理論篇
- Hands-On Artificial Intelligence on Amazon Web Services
- 程序設計語言與編譯
- 最簡數據挖掘
- 從零開始學C++
- 電腦日常使用與維護322問
- 軟件構件技術
- 未來學徒:讀懂人工智能飛馳時代
- 30天學通Java Web項目案例開發
- 機器人剛柔耦合動力學
- Kubernetes on AWS
- 工程地質地學信息遙感自動提取技術
- Photoshop CS4圖像處理考前12小時
- Microsoft Office 365:Exchange Online Implementation and Migration(Second Edition)