官术网_书友最值得收藏!

How to choose the right activation function

The activation function is decided depending upon the objective of the problem statement and the concerned properties. Some of the inferences are as follows:

  • Sigmoid functions work very well in the case of shallow networks and binary classifiers. Deeper networks may lead to vanishing gradients.

  • The ReLU function is the most widely used, and try using Leaky ReLU to avoid the case of dead neurons. Thus, start with ReLU, then move to another activation function if ReLU doesn't provide good results.

  • Use softmax in the outer layer for the multi-class classification.

  • Avoid using ReLU in the outer layer.

主站蜘蛛池模板: 漯河市| 墨玉县| 伊宁市| 平山县| 凉城县| 杭州市| 临朐县| 陆河县| 东莞市| 北安市| 专栏| 西乌珠穆沁旗| 八宿县| 昭通市| 富平县| 邵东县| 交口县| 富宁县| 临桂县| 贵南县| 海阳市| 卢湾区| 大化| 南平市| 苗栗县| 马关县| 汪清县| 信宜市| 枣强县| 烟台市| 潼关县| 永嘉县| 同德县| 隆尧县| 蒙自县| 健康| 武强县| 肃北| 界首市| 神农架林区| 丁青县|