- Hands-On Data Science with Anaconda
- Dr. Yuxing Yan James Yan
- 152字
- 2021-06-25 21:08:50
Data output
In the previous section, by using the R language, we generated a data asset called final. To save it to a CSV file, we could use the write.csv() or write.table() functions, shown in the code here:
> write.csv(final,file="c:/temp/t.csv") > write.table(final,file="c:/temp/t2.txt",sep=";")
The separator for the write.csv() function is a comma, while we can specify our own separator for the write.table() function. To find out the other R functions starting with write, we could use the apropos() function, shown here:
> apropos("^write") [1] "write" "write.csv" "write.csv2" [4] "write.dcf" "write.ftable" "write.socket" [7] "write.table" "writeBin" "writeChar" [10] "writeClipboard" "writeLines"
For the following Python program, we export Fama-French monthly factors to three different output formats, pickle, CSV, and text files:
import pandas as pd infile="http://canisius.edu/~yany/data/ff3monthly.csv" ff3=pd.read_csv(infile,skiprows=3) print(ff3.head(2)) # output to pickle ff3.to_pickle("c:/temp/ff3.pkl") # output to a csv file outfile=open("c:/temp/ff3.csv","w") ff3.to_csv(outfile,index=None) outfile.close() # output to text file outfile2=open("c:/temp/ff3.txt","w") ff3.to_csv(outfile2, header=True, index=None, sep=' ', mode='a') outfile2.close()
推薦閱讀
- Project 2007項目管理實用詳解
- 計算機應用
- Dreamweaver 8中文版商業案例精粹
- Dreamweaver CS3網頁設計50例
- Cloud Analytics with Microsoft Azure
- Hands-On Machine Learning with TensorFlow.js
- MicroPython Projects
- 工業機器人入門實用教程(KUKA機器人)
- AI 3.0
- Linux:Powerful Server Administration
- IBM? SmartCloud? Essentials
- SQL Server數據庫應用基礎(第2版)
- Mastering Text Mining with R
- Mastering OpenStack(Second Edition)
- AVR單片機工程師是怎樣煉成的