官术网_书友最值得收藏!

Merging different datasets

First, let's generate some hypothetical datasets. Then we will try to merge them according to certain rules. The easiest way is to use Monte Carlo simulation to generate those datasets:

> set.seed(123) 
> nStocks<-4 
> nPeriods<-24 
> x<-runif(nStocks*nPeriods,min=-0.1,max=0.20) 
> a<-matrix(x,nPeriods,nStocks) 
> d1<-as.Date("2000-01-01") 
> d2<-as.Date("2001-12-01") 
> dd<-seq(d1,d2,"months") 
> stocks<-data.frame(dd,a) 
> colnames(stocks)<-c("DATE",paste('stock',1:nStocks,sep=''))  

In the code, the first line sets up a random seed which will guarantee that any user will get the same random numbers if he/she uses the same random seed. The runif() function is used to get random numbers from a uniform distribution. In a sense, the preceding code would generate 2-year returns for five stocks. The dim() and head() function can be used to see the dimensions of the dataset and its first couple of lines, as shown here:

> dim(stocks) 
[1] 24  5 
> head(stocks) 
        DATE      stock1      stock2      stock3      stock4 
1 2000-01-01 -0.01372674  0.09671174 -0.02020821  0.11305472 
2 2000-02-01  0.13649154  0.11255914  0.15734831 -0.09981257 
3 2000-03-01  0.02269308  0.06321981 -0.08625065  0.04259497 
4 2000-04-01  0.16490522  0.07824261  0.03266002 -0.03396433 
5 2000-05-01  0.18214019 -0.01325208  0.13967745  0.01394496 
6 2000-06-01 -0.08633305 -0.05586591 -0.06343022  0.08383130  

Similarly, we could get the market returns, shown in the code here:

> d3<-as.Date("1999-01-01") 
> d4<-as.Date("2010-12-01") 
> dd2<-seq(d3,d4,"months") 
> y<-runif(length(dd2),min=-0.05,max=0.1) 
> market<-data.frame(dd2,y) 
> colnames(market)<-c("DATE","MKT") 

To make the merge more interesting, we deliberately make the market returns longer, shown here along with its dimensions and the first several lines:

> dim(market) 
[1] 144   2 
> head(market,2) 
        DATE          MKT 
1 1999-01-01  0.047184022 
2 1999-02-01 -0.002026907 

To merge them, we have the following code:

> final<-merge(stocks,market) 
> dim(final) 
[1] 24  6 
> head(final,2) 
        DATE      stock1     stock2      stock3      stock4        MKT 
1 2000-01-01 -0.01372674 0.09671174 -0.02020821  0.11305472 0.05094986 
2 2000-02-01  0.13649154 0.11255914  0.15734831 -0.09981257 0.06056166 

To find out more about the R merge() function, just type help(merge) and we can then specify inner merge, left-merge, right-merge, and out merge. The default setting in the previous case is called inner merge, as in picking up observations that only exist in both datasets.

The following Python program shows this concept clearly:

import pandas as pd 
import scipy as sp 
x= pd.DataFrame({'YEAR': [2010,2011, 2012, 2013], 
                 'FirmA': [0.2, -0.3, 0.13, -0.2], 
                 'FirmB': [0.1, 0, 0.05, 0.23]}) 
y = pd.DataFrame({'YEAR': [2011,2013,2014, 2015], 
                 'FirmC': [0.12, 0.23, 0.11, -0.1], 
                 'SP500': [0.1,0.17, -0.05, 0.13]}) 
 
print("n  inner  merge ") 
print(pd.merge(x,y, on='YEAR')) 
print(" n  outer merge  ") 
print(pd.merge(x,y, on='YEAR',how='outer')) 
print("n  left  merge  ") 
print(pd.merge(x,y, on='YEAR',how='left')) 
print("n  right  merge ") 
print(pd.merge(x,y, on='YEAR',how='right')) 

The related output is shown here:

主站蜘蛛池模板: 固原市| 莆田市| 仁寿县| 梧州市| 迁西县| 西平县| 修文县| 阜康市| 高淳县| 湘乡市| 黔西县| 天等县| 墨脱县| 济宁市| 千阳县| 通道| 新和县| 特克斯县| 南康市| 长乐市| 绥宁县| 景德镇市| 安丘市| 明星| 那坡县| 青州市| 伊春市| 乃东县| 花莲县| 岑巩县| 宜兴市| 佛冈县| 沛县| 沙洋县| 怀来县| 台前县| 承德县| 梅河口市| 雷州市| 抚远县| 青州市|