- Hands-On Data Science with Anaconda
- Dr. Yuxing Yan James Yan
- 283字
- 2021-06-25 21:08:50
Merging different datasets
First, let's generate some hypothetical datasets. Then we will try to merge them according to certain rules. The easiest way is to use Monte Carlo simulation to generate those datasets:
> set.seed(123) > nStocks<-4 > nPeriods<-24 > x<-runif(nStocks*nPeriods,min=-0.1,max=0.20) > a<-matrix(x,nPeriods,nStocks) > d1<-as.Date("2000-01-01") > d2<-as.Date("2001-12-01") > dd<-seq(d1,d2,"months") > stocks<-data.frame(dd,a) > colnames(stocks)<-c("DATE",paste('stock',1:nStocks,sep=''))
In the code, the first line sets up a random seed which will guarantee that any user will get the same random numbers if he/she uses the same random seed. The runif() function is used to get random numbers from a uniform distribution. In a sense, the preceding code would generate 2-year returns for five stocks. The dim() and head() function can be used to see the dimensions of the dataset and its first couple of lines, as shown here:
> dim(stocks) [1] 24 5 > head(stocks) DATE stock1 stock2 stock3 stock4 1 2000-01-01 -0.01372674 0.09671174 -0.02020821 0.11305472 2 2000-02-01 0.13649154 0.11255914 0.15734831 -0.09981257 3 2000-03-01 0.02269308 0.06321981 -0.08625065 0.04259497 4 2000-04-01 0.16490522 0.07824261 0.03266002 -0.03396433 5 2000-05-01 0.18214019 -0.01325208 0.13967745 0.01394496 6 2000-06-01 -0.08633305 -0.05586591 -0.06343022 0.08383130
Similarly, we could get the market returns, shown in the code here:
> d3<-as.Date("1999-01-01") > d4<-as.Date("2010-12-01") > dd2<-seq(d3,d4,"months") > y<-runif(length(dd2),min=-0.05,max=0.1) > market<-data.frame(dd2,y) > colnames(market)<-c("DATE","MKT")
To make the merge more interesting, we deliberately make the market returns longer, shown here along with its dimensions and the first several lines:
> dim(market) [1] 144 2 > head(market,2) DATE MKT 1 1999-01-01 0.047184022 2 1999-02-01 -0.002026907
To merge them, we have the following code:
> final<-merge(stocks,market) > dim(final) [1] 24 6 > head(final,2) DATE stock1 stock2 stock3 stock4 MKT 1 2000-01-01 -0.01372674 0.09671174 -0.02020821 0.11305472 0.05094986 2 2000-02-01 0.13649154 0.11255914 0.15734831 -0.09981257 0.06056166
To find out more about the R merge() function, just type help(merge) and we can then specify inner merge, left-merge, right-merge, and out merge. The default setting in the previous case is called inner merge, as in picking up observations that only exist in both datasets.
The following Python program shows this concept clearly:
import pandas as pd import scipy as sp x= pd.DataFrame({'YEAR': [2010,2011, 2012, 2013], 'FirmA': [0.2, -0.3, 0.13, -0.2], 'FirmB': [0.1, 0, 0.05, 0.23]}) y = pd.DataFrame({'YEAR': [2011,2013,2014, 2015], 'FirmC': [0.12, 0.23, 0.11, -0.1], 'SP500': [0.1,0.17, -0.05, 0.13]}) print("n inner merge ") print(pd.merge(x,y, on='YEAR')) print(" n outer merge ") print(pd.merge(x,y, on='YEAR',how='outer')) print("n left merge ") print(pd.merge(x,y, on='YEAR',how='left')) print("n right merge ") print(pd.merge(x,y, on='YEAR',how='right'))
The related output is shown here:

- GNU-Linux Rapid Embedded Programming
- Oracle SOA Governance 11g Implementation
- 21天學通JavaScript
- 基于LPC3250的嵌入式Linux系統開發
- 快學Flash動畫百例
- Multimedia Programming with Pure Data
- Associations and Correlations
- 大數據技術與應用
- CentOS 8 Essentials
- CompTIA Linux+ Certification Guide
- 構建高性能Web站點
- Containers in OpenStack
- 大數據技術基礎:基于Hadoop與Spark
- Mastering Predictive Analytics with scikit:learn and TensorFlow
- 智能制造系統及關鍵使能技術