- Hands-On Data Science with Anaconda
- Dr. Yuxing Yan James Yan
- 205字
- 2021-06-25 21:08:49
Inputting data using Python
Similarly, we can use Python to retrieve the data, as shown in the code here:
import pandas as pd path="http://archive.ics.uci.edu/ml/machine-learning-databases/" dataset="iris/bezdekIris.data" inFile=path+dataset data=pd.read_csv(inFile,header=None) data.columns=["sepalLength","sepalWidth","petalLength","petalWidth","Class"]
After retrieving data, the print(data.head(2)) function can be used to see the first two instances:
> print(data.head(2))
sepalLength sepalWidth petalLength petalWidth Class 0 5.1 3.5 1.4 0.2 Iris-setosa 1 4.9 3.0 1.4 0.2 Iris-setosa
When typing pd.read.csv(), we can find the definitions of all input variables, shown in the following screenshot. Again, to save space, only the first several input variables are shown:

To prevent a future potential change in terms of a dataset link, we have a backup dataset located at the author's website, shown in the following Python code:
inFile="http://canisius.edu/~yany/data/bezdekIris.data.txt" import pandas as pd d=pd.read_csv(inFile,header=None)
The following table shows several functions included in the pandas package that we could use to retrieve data:

Table 3.4 Functions included in the Python pandas module for inputting data
To find out detailed information on each of the preceding functions, we use the help() function. For example, if we want to get more information about the read_sas() function, we issue the following commands:
import pandas as pd help(pd.read_sas)
The corresponding output, the top part only, is shown here:

- 計算機應用基礎·基礎模塊
- Java實用組件集
- Photoshop CS4經典380例
- 21天學通ASP.NET
- 21天學通C#
- 機器學習流水線實戰
- RPA(機器人流程自動化)快速入門:基于Blue Prism
- 控制系統計算機仿真
- 大數據驅動的機械裝備智能運維理論及應用
- Photoshop CS5圖像處理入門、進階與提高
- Unreal Development Kit Game Design Cookbook
- Serverless Design Patterns and Best Practices
- Learning iOS 8 for Enterprise
- 實戰突擊
- Hands-On Artificial Intelligence for Beginners