- Redash v5 Quick Start Guide
- Alexander Leibzon Yael Leibzon
- 239字
- 2021-08-13 15:12:11
Launching an instance using Bitnami Redash AMI
In case you decided to use Bitnami AMI, the steps are mostly identical to Redash's official AMI.
After the instance is ready, you need to find out its public IP / DNS and open the System Log of the instance to get the user/pass so that you can log in to Redash.
Here is a relevant part from the system log of the instance we started in the previous example:
[ 44.581715] bitnami[314]: large
[ 45.784949] ip_tables: (C) 2000-2006 Netfilter Core Team
[ 46.575518] bitnami[314]: #########################################################################
[ 46.592191] bitnami[314]: # #
[ 46.609797] bitnami[314]: # Setting Bitnami application password to 'k4gs94SvhRBW' #
[ 46.624549] bitnami[314]: # (the default application username is 'user@example.com') #
[ 46.640013] bitnami[314]: # #
[ 46.655361] bitnami[314]: #########################################################################
[[32m OK [0m] Started LSB: Cloud init local.
Starting LSB: Cloud init...
[[32m OK [0m] Started LSB: Cloud init.
Starting LSB: Cloud init modules --mode config...
Starting OpenBSD Secure Shell server...
From the preceding log, we can find the user/pass so that we can log in to Redash.
In case of Bitnami image, the first phase setup (that is, the creation of the Redash Admin user) is done by Bitnami, and you are redirected to the Login page itself.
Now, we simply point the browser to the public IP / DNS of the instance.
If everything goes as expected, we should see the login page of Redash, as follows:

推薦閱讀
- Hands-On Internet of Things with MQTT
- Oracle SOA Governance 11g Implementation
- 火格局的時空變異及其在電網防火中的應用
- Div+CSS 3.0網頁布局案例精粹
- WOW!Illustrator CS6完全自學寶典
- 工業機器人工程應用虛擬仿真教程:MotoSim EG-VRC
- Hands-On Machine Learning with TensorFlow.js
- 西門子S7-200 SMART PLC實例指導學與用
- 控制系統計算機仿真
- Implementing AWS:Design,Build,and Manage your Infrastructure
- 云原生架構進階實戰
- 中國戰略性新興產業研究與發展·增材制造
- Linux Shell編程從初學到精通
- 生成對抗網絡項目實戰
- 機器學習案例分析(基于Python語言)