官术网_书友最值得收藏!

Putting it all together

We will be using the diabetes dataset from Pima Indians.

This dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The objective of the dataset is to diagnostically predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset. Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females, at least 21 years old, and of Pima Indian heritage. The datasets consist of several medical predictor variables and one target variable, outcome. Predictor variables include the number of pregnancies the patient has had, their BMI, insulin level, age, and so on.
from keras.models import Sequential
from keras.layers import Dense
import numpy
# fix random seed for reproducibility
numpy.random.seed(7)
# load pima indians dataset
dataset = numpy.loadtxt("data/diabetes.csv", delimiter=",", skiprows=1)
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X, Y, epochs=150, batch_size=10)
# evaluate the model
scores = model.evaluate(X, Y)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

The dataset shape is (768, 9).

Let's look at the value of the dataset:

Values of X, which is columns 0 to 7:

The value of Y is the 8th column of the dataset, as shown in the following screenshot:

主站蜘蛛池模板: 廉江市| 固阳县| 白朗县| 卢氏县| 共和县| 新乐市| 武城县| 兴城市| 黄浦区| 余姚市| 宁蒗| 克东县| 玉溪市| 延吉市| 甘泉县| 修水县| 松滋市| 永平县| 蒙城县| 嫩江县| 奉贤区| 青铜峡市| 杭锦后旗| 西充县| 凤冈县| 浦北县| 河间市| 文安县| 灵武市| 大英县| 上饶县| 遵义市| 富蕴县| 阜康市| 固安县| 谢通门县| 朔州市| 县级市| 资溪县| 西宁市| 游戏|