官术网_书友最值得收藏!

Putting it all together

We will be using the diabetes dataset from Pima Indians.

This dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The objective of the dataset is to diagnostically predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset. Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females, at least 21 years old, and of Pima Indian heritage. The datasets consist of several medical predictor variables and one target variable, outcome. Predictor variables include the number of pregnancies the patient has had, their BMI, insulin level, age, and so on.
from keras.models import Sequential
from keras.layers import Dense
import numpy
# fix random seed for reproducibility
numpy.random.seed(7)
# load pima indians dataset
dataset = numpy.loadtxt("data/diabetes.csv", delimiter=",", skiprows=1)
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X, Y, epochs=150, batch_size=10)
# evaluate the model
scores = model.evaluate(X, Y)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

The dataset shape is (768, 9).

Let's look at the value of the dataset:

Values of X, which is columns 0 to 7:

The value of Y is the 8th column of the dataset, as shown in the following screenshot:

主站蜘蛛池模板: 陆丰市| 桃园市| 木里| 察哈| 凤台县| 弥勒县| 勃利县| 封丘县| 嘉黎县| 镇宁| 藁城市| 宿迁市| 临城县| 天长市| 竹溪县| 长宁县| 仁布县| 文化| 玉龙| 锦屏县| 吴旗县| 彭山县| 达州市| 济南市| 汝城县| 栾川县| 漳州市| 澳门| 万安县| 翁源县| 潼南县| 驻马店市| 东港市| 富平县| 商丘市| 台中县| 柘城县| 白玉县| 弥渡县| 项城市| 永胜县|