官术网_书友最值得收藏!

Putting it all together

We will be using the diabetes dataset from Pima Indians.

This dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The objective of the dataset is to diagnostically predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset. Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females, at least 21 years old, and of Pima Indian heritage. The datasets consist of several medical predictor variables and one target variable, outcome. Predictor variables include the number of pregnancies the patient has had, their BMI, insulin level, age, and so on.
from keras.models import Sequential
from keras.layers import Dense
import numpy
# fix random seed for reproducibility
numpy.random.seed(7)
# load pima indians dataset
dataset = numpy.loadtxt("data/diabetes.csv", delimiter=",", skiprows=1)
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X, Y, epochs=150, batch_size=10)
# evaluate the model
scores = model.evaluate(X, Y)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

The dataset shape is (768, 9).

Let's look at the value of the dataset:

Values of X, which is columns 0 to 7:

The value of Y is the 8th column of the dataset, as shown in the following screenshot:

主站蜘蛛池模板: 寻乌县| 正镶白旗| 晋中市| 慈利县| 吉水县| 远安县| 长垣县| 海淀区| 旬邑县| 宁国市| 泸定县| 米林县| 利川市| 山东省| 怀安县| 罗江县| 永城市| 衡阳市| 南澳县| 贺兰县| 威信县| 周口市| 都昌县| 宜丰县| 贵德县| 亳州市| 昌平区| 达日县| 镇平县| 镇巴县| 托克逊县| 甘肃省| 嘉祥县| 太谷县| 临猗县| 楚雄市| 马边| 尚义县| 望都县| 石楼县| 阿拉善盟|