官术网_书友最值得收藏!

Logistic regression with Keras

Keras is a high-level library that is available as part of TensorFlow. In this section, we will rebuild the same model we built earlier with TensorFlow core with Keras:

  1. Keras takes data in a different format, and so we must first reformat the data using datasetslib:
x_train_im = mnist.load_images(x_train)

x_train_im, x_test_im = x_train_im / 255.0, x_test / 255.0

In the preceding code, we are loading the training images in memory before both the training and test images are scaled, which we do by dividing them by 255.

  1. Then, we build the model:
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
  1. Compile the model with the sgd optimizer. Set the categorical entropy as the loss function and the accuracy as a metric to test the model:
model.compile(optimizer='sgd',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
  1. Train the model for 5 epochs with the training set of images and labels:
model.fit(x_train_im, y_train, epochs=5)

Epoch 1/5 60000/60000 [==============================] - 3s 45us/step - loss: 0.7874 - acc: 0.8095 Epoch 2/5 60000/60000 [==============================] - 3s 42us/step - loss: 0.4585 - acc: 0.8792 Epoch 3/5 60000/60000 [==============================] - 2s 42us/step - loss: 0.4049 - acc: 0.8909 Epoch 4/5 60000/60000 [==============================] - 3s 42us/step - loss: 0.3780 - acc: 0.8965 Epoch 5/5 60000/60000 [==============================] - 3s 42us/step - loss: 0.3610 - acc: 0.9012 10000/10000 [==============================] - 0s 24us/step
  1. Evaluate the model with the test data:
model.evaluate(x_test_im, nputil.argmax(y_test))

We get the following evaluation scores as output:

[0.33530342621803283, 0.9097]

Wow! Using Keras, we can achieve higher accuracy. We achieved approximately 90% accuracy. This is because Keras internally sets many optimal values for us so that we can quickly start building models.

To learn more about Keras and to look at more examples, refer to the book Mastering TensorFlow, from Packt Publications.
主站蜘蛛池模板: 阜平县| 纳雍县| 长岛县| 石家庄市| 若尔盖县| 镇安县| 淮南市| 湖南省| 交口县| 集安市| 张北县| 阿尔山市| 康平县| 乌审旗| 丰镇市| 伊金霍洛旗| 林口县| 应城市| 习水县| 衡阳市| 岳西县| 大同县| 伊金霍洛旗| 绩溪县| 渭南市| 永济市| 阿克陶县| 宜宾县| 淮安市| 吉木乃县| 焦作市| 大石桥市| 平塘县| 云霄县| 乌兰县| 台安县| 南昌县| 彭山县| 观塘区| 沈阳市| 保定市|