- Machine Learning Quick Reference
- Rahul Kumar
- 55字
- 2021-08-20 10:05:07
Model selection using cross-validation
We can make use of cross-validation to find out which model is performing better by using the following code:
knn = KNeighborsClassifier(n_neighbors=20)
print(cross_val_score(knn, X, y, cv=10, scoring='accuracy').mean())
The 10-fold cross-validation is as follows:
# 10-fold cross-validation with logistic regression
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()
print(cross_val_score(logreg, X, y, cv=10, scoring='accuracy').mean())
推薦閱讀
- Learning Microsoft Azure Storage
- 大數據專業英語
- Windows程序設計與架構
- Arduino &樂高創意機器人制作教程
- 樂高機器人—槍械武器庫
- 我也能做CTO之程序員職業規劃
- Salesforce for Beginners
- 強化學習
- Hands-On SAS for Data Analysis
- Redash v5 Quick Start Guide
- Serverless Design Patterns and Best Practices
- 樂高創意機器人教程(中級 上冊 10~16歲) (青少年iCAN+創新創意實踐指導叢書)
- Embedded Linux Development using Yocto Projects(Second Edition)
- Hands-On Generative Adversarial Networks with Keras
- CPLD/FPGA技術應用