官术网_书友最值得收藏!

Model selection using cross-validation

We can make use of cross-validation to find out which model is performing better by using the following code:

knn = KNeighborsClassifier(n_neighbors=20)
print(cross_val_score(knn, X, y, cv=10, scoring='accuracy').mean())

The 10-fold cross-validation is as follows:

# 10-fold cross-validation with logistic regression
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()
print(cross_val_score(logreg, X, y, cv=10, scoring='accuracy').mean())
主站蜘蛛池模板: 鄂伦春自治旗| 任丘市| 建宁县| 夏津县| 宣威市| 中山市| 上蔡县| 武安市| 湟源县| 衡阳县| 兴安盟| 若尔盖县| 巫溪县| 亚东县| 娄烦县| 响水县| 灌南县| 万山特区| 克山县| 东台市| 丰城市| 邻水| 甘泉县| 大同县| 荔波县| 谢通门县| 东乡县| 阿瓦提县| 微山县| 奈曼旗| 洪泽县| 中方县| 蓬安县| 准格尔旗| 淅川县| 吉隆县| 澜沧| 萝北县| 新龙县| 灵武市| 东莞市|