官术网_书友最值得收藏!

Face Aging Using Conditional GAN

Conditional GANs (cGANs) are an extension of the GAN model. They allow for the generation of images that have certain conditions or attributes and have proved to be better than vanilla GANs as a result. In this chapter, we will implement a cGAN that, once trained, can perform automatic face aging. The cGAN network that we will implement was first introduced by Grigory Antipov, Moez Baccouche, and Jean-Luc Dugelay, in their paper titled Face Aging With Conditional Generative Adversarial Networks, which can be found at the following link: https://arxiv.org/pdf/1702.01983.pdf

In this chapter, we will cover the following topics:

  • Introducing cGANs for face aging
  • Setting up the project
  • Preparing the data
  • A Keras implementation of a cGAN
  • Training a cGAN
  • Evaluation and hyperparameter tuning
  • Practical applications of face aging 
主站蜘蛛池模板: 余干县| 巩义市| 黔江区| 志丹县| 浦县| 双辽市| 民丰县| 抚顺县| 利津县| 维西| 勃利县| 青川县| 新兴县| 乐东| 房山区| 密云县| 曲阳县| 德昌县| 大新县| 武城县| 南川市| 浦北县| 铜陵市| 无极县| 霞浦县| 井陉县| 南皮县| 云霄县| 玛曲县| 罗平县| 新疆| 砀山县| 安丘市| 平果县| 万盛区| 平乐县| 沂水县| 社会| 安庆市| 宁明县| 静乐县|