官术网_书友最值得收藏!

Face Aging Using Conditional GAN

Conditional GANs (cGANs) are an extension of the GAN model. They allow for the generation of images that have certain conditions or attributes and have proved to be better than vanilla GANs as a result. In this chapter, we will implement a cGAN that, once trained, can perform automatic face aging. The cGAN network that we will implement was first introduced by Grigory Antipov, Moez Baccouche, and Jean-Luc Dugelay, in their paper titled Face Aging With Conditional Generative Adversarial Networks, which can be found at the following link: https://arxiv.org/pdf/1702.01983.pdf

In this chapter, we will cover the following topics:

  • Introducing cGANs for face aging
  • Setting up the project
  • Preparing the data
  • A Keras implementation of a cGAN
  • Training a cGAN
  • Evaluation and hyperparameter tuning
  • Practical applications of face aging 
主站蜘蛛池模板: 吉水县| 石狮市| 汉阴县| 安国市| 米林县| 大悟县| 武乡县| 景德镇市| 肇东市| 香格里拉县| 凌云县| 鹿泉市| 平舆县| 拉孜县| 丹凤县| 玛沁县| 定西市| 沁水县| 视频| 丰原市| 卓尼县| 乌鲁木齐市| 大安市| 闵行区| 井冈山市| 尤溪县| 永清县| 武功县| 醴陵市| 丘北县| 江永县| 永修县| 漾濞| 道孚县| 濮阳县| 台安县| 布尔津县| 林芝县| 镇赉县| 通海县| 龙江县|