官术网_书友最值得收藏!

Introduction to 3D-GANs

3D Generative Adversarial Networks (3D-GANs) is a variant of GANs, just like StackGANs, CycleGANs, and Super-Resolution Generative Adversarial Networks (SRGANs). Similar to a vanilla GAN, it has a generator and a discriminator model. Both of the networks use 3D convolutional layers, instead of using 2D convolutions. If provided with enough data, it can learn to generate 3D shapes with good visual quality.

Let's understand 3D convolutions before looking closer at the 3D-GAN network.

主站蜘蛛池模板: 县级市| 广河县| 临沂市| 弥勒县| 上饶县| 夏河县| 永济市| 晋宁县| 富锦市| 盐津县| 扬中市| 资源县| 阿尔山市| 陆川县| 玉田县| 高清| 庐江县| 东莞市| 越西县| 台东县| 隆尧县| 望江县| 成都市| 甘谷县| 阜平县| 五寨县| 宽城| 额敏县| 萨嘎县| 普安县| 临漳县| 陕西省| 沂南县| 石嘴山市| 唐海县| 上思县| 休宁县| 乌兰县| 鱼台县| 五大连池市| 临江市|