- Generative Adversarial Networks Projects
- Kailash Ahirwar
- 128字
- 2021-07-02 13:38:49
3D-GAN - Generating Shapes Using GANs
A 3D-GAN is a GAN architecture for 3D shape generation. 3D shape generation is typically a complex problem, due to the complexities involved in processing 3D images. A 3D-GAN is a solution that can generate realistic and varied 3D shapes and was introduced by Jiajun Wu, Chengkai Zhang, Tianfan Xue, and others in the paper titled Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. This paper is available at http://3dgan.csail.mit.edu/papers/3dgan_nips.pdf. In this chapter, we will implement a 3D-GAN using the Keras framework.
We will cover the following topics:
- Introduction to the basics of 3D-GANs
- Setting up the project
- Preparing the data
- A Keras implementation of a 3D-GAN
- Training the 3D-GAN
- Hyperparameter optimization
- Practical applications of 3D-GANs
推薦閱讀
- Blockchain Quick Start Guide
- CorelDRAW X4中文版平面設計50例
- Hands-On Linux for Architects
- Creo Parametric 1.0中文版從入門到精通
- 自動生產線的拆裝與調試
- 完全掌握AutoCAD 2008中文版:綜合篇
- Visual Basic.NET程序設計
- 中國戰略性新興產業研究與發展·智能制造裝備
- 大數據技術基礎:基于Hadoop與Spark
- 基于ARM9的小型機器人制作
- Artificial Intelligence By Example
- INSTANT Adobe Story Starter
- 貫通開源Web圖形與報表技術全集
- 3ds Max造型表現藝術
- 智慧未來