官术网_书友最值得收藏!

Evidence 

The evidence variable is the probability of a condition in the dataset. In our example, the probability of temperature being 70°F or above is only 10%. Rare events have low evidence probability. Evidence probabilities boost posterior probabilities of rare events. For the purpose of the Na?ve Bayes classifier, we do not need to consider the evidence variable, since it is not dependent on the class variable.

So, Bayes' theorem is used to calculate the probability of an event given a single condition. However, when we train ML algorithms, we use one or more features to predict the probability of an event. In the next section, we will explain the Na?ve Bayes algorithm and see how it utilizes posterior probabilities of multiple features variables.

主站蜘蛛池模板: 马山县| 瑞丽市| 澄江县| 白山市| 安塞县| 美姑县| 舞钢市| 庄浪县| 文山县| 兴国县| 晋城| 新营市| 谷城县| 五家渠市| 营山县| 阿克| 彭泽县| 康乐县| 呼和浩特市| 建昌县| 桃江县| 塘沽区| 平泉县| 陆丰市| 裕民县| 江阴市| 泸溪县| 台北市| 广南县| 泰顺县| 中超| 长垣县| 临夏县| 图木舒克市| 梨树县| 天镇县| 昌平区| 宾阳县| 光山县| 靖远县| 平遥县|