- Training Systems Using Python Statistical Modeling
- Curtis Miller
- 206字
- 2021-06-24 14:20:42
Computing descriptive statistics
In this section, we will review methods for obtaining descriptive statistics from data that is stored in a pandas DataFrame. We will use the pandas library to compute statistics from the data. So, let's jump right in!
DataFrames come equipped with many methods for computing common descriptive statistics for the data they contain. This is one of the advantages of storing data in DataFrames—working with data stored this way is easy. Getting common descriptive statistics, such as the mean, the median, the standard deviation, and more, is easy for data that is present in DataFrames. There are methods that can be called in order to quickly compute each of these. We will review several of these methods now.
If you want a basic set of descriptive statistics, just to get a sense of the contents of the DataFrame, consider using the describe() method. It includes the mean, standard deviation, an account of how much data there is, and the five-number summary built in.
Sometimes, the statistic that you want isn't a built-in DataFrame method. In this case, you will write a function that works for a pandas series, and then apply that function to each column using the apply() method.
- Modular Programming with Python
- 密碼學原理與Java實現
- Mastering OpenCV Android Application Programming
- Java游戲服務器架構實戰
- 深度強化學習算法與實踐:基于PyTorch的實現
- Oracle BAM 11gR1 Handbook
- Node.js:來一打 C++ 擴展
- .NET Standard 2.0 Cookbook
- Bootstrap for Rails
- Solutions Architect's Handbook
- Sails.js Essentials
- Android移動應用開發項目教程
- Python硬件編程實戰
- Go Systems Programming
- 軟件再工程:優化現有軟件系統的方法與最佳實踐