官术网_书友最值得收藏!

Exploring categorical variables

When it comes to an understanding of your categorical variables, there're many different ways to go about it. We can easily use the base R table() function on a feature. If you just want to see how many distinct levels are in a feature, then dplyr works well. In this example, we examine type, which has three unique levels:

dplyr::count(gettysburg, dplyr::n_distinct(type))

The output of the preceding code is as follows:

# A tibble: 1 x 2
`dplyr::n_distinct(type)` n
<int> <int>
3 587

Let's now look at a way to explore all of the categorical features utilizing tidyverse principles. Doing it this way always allows you to save the tibble and examine the results in depth as needed. Here is a way of putting all categorical features into a separate tibble:

gettysburg_cat <-
gettysburg[, sapply(gettysburg, class) == 'character']

Using dplyr, you can now summarize all of the features and the number of distinct levels in each:

gettysburg_cat %>%
dplyr::summarise_all(dplyr::funs(dplyr::n_distinct(.)))

The output of the preceding code is as follows:

# A tibble: 1 x 9
type state regiment_or_battery brigade division corps army july1_Commander Cdr_casualty
<int> <int> <int> <int> <int> <int> <int> <int> <int>
3 30 275 124 38 14 2 586 6

Notice that there're 586 distinct values to july1_Commander. This means that two of the unit Commanders have the same rank and last name. We can also surmise that this feature will be of no value to any further analysis, but we'll deal with that issue in a couple of sections ahead.

Suppose we're interested in the number of observations for each of the levels for the Cdr_casualty feature. Yes, we could use table(), but how about producing the output as a tibble as discussed before? Give this code a try:

gettysburg_cat %>% 
dplyr::group_by(Cdr_casualty) %>%
dplyr::summarize(num_rows = n())

The output of the preceding code is as follows:

# A tibble: 6 x 2
Cdr_casualty num_rows
<chr> <int>
1 captured 6
2 killed 29
3 mortally wounded 24
4 no 405
5 wounded 104
6 wounded-captured 19

Speaking of tables, let's look at a tibble-friendly way of producing one using two features. This code takes the idea of comparing commander casualties by army:

gettysburg_cat %>%
janitor::tabyl(army, Cdr_casualty)

The output of the preceding code is as follows:

army   captured killed mortally wounded   no  wounded  wounded-captured
Confederate 2 15 13 165 44 17
Union 4 14 11 240 60 2

Explore the data on your own and, once you're comfortable with the categorical variables, let's tackle the issue of missing values.

主站蜘蛛池模板: 嘉善县| 屯门区| 吴江市| 内丘县| 铜陵市| 自治县| 镇巴县| 衢州市| 闵行区| 鹤岗市| 河曲县| 晋州市| 舟曲县| 五家渠市| 千阳县| 蕉岭县| 彰化县| 聂荣县| 新蔡县| 河间市| 筠连县| 兴隆县| 阳江市| 曲松县| 东海县| 东兰县| 平定县| 焦作市| 北川| 莱芜市| 贺州市| 牙克石市| 云浮市| 旺苍县| 青河县| 长海县| 潮州市| 梧州市| 聂拉木县| 永年县| 鹤岗市|