- Machine Learning for Cybersecurity Cookbook
- Emmanuel Tsukerman
- 77字
- 2021-06-24 12:28:59
Anomaly detection with Isolation Forest
Anomaly detection is the identification of events in a dataset that do not conform to the expected pattern. In applications, these events may be of critical importance. For instance, they may be occurrences of a network intrusion or of fraud. We will utilize Isolation Forest to detect such anomalies. Isolation Forest relies on the observation that it is easy to isolate an outlier, while more difficult to describe a normal data point.
推薦閱讀
- Project 2007項目管理實用詳解
- Mastering Hadoop 3
- Machine Learning for Cybersecurity Cookbook
- 網頁編程技術
- Visual FoxPro 6.0數據庫與程序設計
- 可編程控制器技術應用(西門子S7系列)
- 完全掌握AutoCAD 2008中文版:機械篇
- Enterprise PowerShell Scripting Bootcamp
- 悟透AutoCAD 2009完全自學手冊
- Prometheus監控實戰
- Chef:Powerful Infrastructure Automation
- 網絡管理工具實用詳解
- Visual FoxPro程序設計
- 過程控制系統
- 人工智能:語言智能處理