- Machine Learning for Cybersecurity Cookbook
- Emmanuel Tsukerman
- 65字
- 2021-06-24 12:28:58
How it works...
We begin by reading in our data (step 1). We then create a train-test split (step 2). We proceed to instantiate an XGBoost classifier with default parameters and fit it to our training set (step 3). Finally, in step 4, we use our XGBoost classifier to predict on the testing set. We then produce the measured accuracy of our XGBoost model's predictions.
推薦閱讀
- 電氣自動化專業(yè)英語(第3版)
- Dreamweaver CS3網(wǎng)頁制作融會貫通
- Learning Apache Spark 2
- Hands-On Neural Networks with Keras
- Getting Started with Containerization
- Maya 2012從入門到精通
- Blender 3D Printing by Example
- Dreamweaver CS6精彩網(wǎng)頁制作與網(wǎng)站建設(shè)
- 筆記本電腦維修90個(gè)精選實(shí)例
- Extending Ansible
- 電腦日常使用與維護(hù)322問
- Learn Microsoft Azure
- 算法設(shè)計(jì)與分析
- 數(shù)據(jù)清洗
- FreeCAD [How-to]